
Constraints
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Generative Models on Constrained Domains

• Flow / diffusion models usually live
in unconstrained Rd .

• Many applications demand exact
constraint satisfaction:

• collision-free robot trajectories
• valid 3D objects
• chemically valid molecules
• discrete, structured data

Challenge: For continuous manifolds or discrete sets Ω (or a mixture of
both), design processes to learn while ensuring

Pθ
(
X1 ∈ Ω

)
= 1,

regardless initialization and randomness. We call {Xt} an Ω-bridge in this
case.
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Two Approaches

• Process on manifold ✗ define the ODE/SDE directly on Ω.
• Guarantees feasibility, but new Ω requires bespoke math [BASH+23].
• For discrete Ω, there’s no differentiable structure [GRS+24].

• Embedded and Relaxation ✓ keep the process in Rd and guide it
toward Ω via constraint-aware drifts, enabled by singular forces.

• Flexible: works even when Ω is a finite set or defined via black-box
constraints [UCE+25].

• Leverages the full toolbox of continuous flow/diffusion methods.
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Singular Forces

• Enforcing constraints using singular forces: these are deterministic
drift terms that guarantee the terminal sample lies in the constrained
domain Ω.

dZt = vΩt (Zt)dt︸ ︷︷ ︸
singular force

+ vθt (Zt)︸ ︷︷ ︸
trainable net

dt + σt dWt .

• vθt : the trainable neural network that learns data-dependent dynamics.

• vΩt : an analytical singular drift that ensures Z1 ∈ Ω for any vθt .

• As singular force vΩ dominates near t = 1, it is possible to ensure
constraints for all nicely behavioring vθ:

P(Z1 ∈ Ω) = 1.
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Girsanov Theorem for Path Measures

Finite Perturbations Does not Change SupportGiven two SDEs:

dZt = bt(Zt)dt + σtdWt

dZ̃t = (bt(Z̃t) + δt(Z̃t))dt + σtdWt ,

with the same initialization Z0 = Z̃0 and bounded
∣∣σ−1

t δt(x)
∣∣ ≤ M. Then

P(Z1 ∈ Ω) = 1 =⇒ P(Z̃1 ∈ Ω) = 1.

Proof. Let P, P̃ the path measures of Z̃t and Zt . By Girsanov’s theorem,

KL(P̃ || P) =
1
2

∫ 1

0
E
[
∥σ−1

t δt(Z̃t)∥2
]
dt <

M

2
< +∞.

The same holds for KL(P || P̃). Hence, P and P̃ are absolutely continuous
w.r.t. each other, meaning that they share the same support.
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Example
The following dynamics constraint Z1 on a finite domain
Ω = {µ(1), . . . , µ(K)}:

dZt =
∑
i

ωi (Zt)
µ(i) − Zt

1 − t
dt︸ ︷︷ ︸

singular force

+ vθt (Zt)dt︸ ︷︷ ︸
trainable bounded force

+ σdWt .

• The singular force is the rectified flow / Brownian bridge of uniform
distribution on Ω.
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General strategies for designing Ω-bridges:
• Derive analytic form of rectified flow / diffusion of a reference measure
π0 on Ω.

• Derive posterior processes conditioned on X1 ∈ Ω, using Doob’s
h-transform.

• More complex domains: Derive variants of gradient flow, or Langevin
dynamics of a potential function.
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Normalized Gradient Flow: Finite-Time Convergence
• Recall that dZt =

x∗−Zt
1−t dt coincides with a normalized gradient flow.

• In general, normalized gradient flow squeezes gradient flow into a
finite time.

Normalized Gradient flow :
d
dt

xt = −η
∇f (xt)

∥∇f (xt)∥
.

If f is strongly convex, then there exists a finite t∗, such that xt∗ reaches
the minimum, that is, f (xt∗) = minx f (x).

Proof.
[RB20] Assume minx f (x) = 0. We have

d
dt

f (xt) = −η ∥∇f (xt)∥ ≤ −µηf (xt)
1/2.

which gives that 2f (xt)1/2 ≤ 2f (x0)
1/2 − µηt. Hence, we achieve f (xt) = 0

within t ≤ 2f (x0)
1/2/(µη).
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Singular ODE Guarantees Constraints

dZt =
e(Zt , t)− Zt

1 − t
dt + vθ(Zt , t) dt.

If
∥∥vθ∥∥ is bounded, e1(z) ∈ Ω, and e is continuous, then Z1 ∈ Ω.

Proof.
Computing the time derivative of Zt/(1 − t) and integrating both sides:

Zt

1 − t
− Z0 =

∫ t

0

vθ(Zτ , τ)

1 − τ
dτ +

∫ t

0

e(Zτ , τ)

(1 − τ)2
dτ.

As t → 1, (1 − t)Z0 and (1 − t)
∫ t
0

vθ(Zτ ,τ)
1−τ dτ vanish. Apply L’Hôpital’s

rule to the last term:

lim
t→1

Zt = lim
t→1

(1−t)

∫ t

0

e(Zτ , τ)

(1 − τ)2
dτ = lim

t→1

∫ t
0

e(Zτ ,τ)
(1−τ)2 dτ∫ t

0
1

(1−τ)2 dτ
= lim

t→1
e(Zτ , τ) ∈ Ω.
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Discrete BridgesIf Ω is finite / discrete, this motivates another parame-
terization:

dZt =
eθt (Zt)− Zt

1 − t
dt,

where
eθt (Zt) =

∑
i

µ(i)pθ(X1 = µ(i) | Zt).

• Train the probability pθ(X1 = µ(i) | Zt), rather than the velocity.

• Cross entropy loss can be used

• Example: Dirichlet flow matching. [SJW+24]
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Discrete Flow / Diffusion: Two Approaches

Discrete Latents: Jump within a Discrete Set.
• Examples: D3PM [AJH+21], CTMC [CBDB+22], RADD [ONX+24],

MDLM [SAS+24], LLaDA [NZY+25], discrete flow matching
gat2024discrete.

Continuous Latents: Flow/Diffusion in Continuous or Embedding Space.

• Examples: Argmax Diffusion [HNJ+21], Diffusion-LM [LTG+22],
Ω-bridges [LWYL22], Dirichlet Flow Matching [SJW+24].

Discrete Jump Continuous Flow
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Discrete vs Continuous Latents

Discrete Latents:
• Curse of dimensionality: each

jump must be factorized.

• Therefore, one-step generation
is theoretically impossible.

• Ordering is key: essentially a
randomly ordered
autoregressive model.

Continuous Latents:
• Traverse a more flexible,

continuous space.

• One-step generation is
theoretically possible (when the
ODE is straight).

• Leverage a rich toolbox from
the continuous domain:
solvers, distillation, control,
etc.
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Discrete vs Continuous Latents

Continuous latent flow Its argmax discretization
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Two Paths to Rectified Discrete Flow

Rectify then Discretize: Build a continuous rectified flow, then discretize
the trajectory to obtain a discrete jump process.

Discretize then Rectify: Directly construct a discrete jump process as
the interpolant, then rectify (Markovize) it.

Under suitable conditions, both approaches yield the same jump processes
[Liu24].

Discretize(Rectify({Xt})) = Rectify(Discretize({Xt})).

• Related: Diffusion Duality [SDG+25].
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Thank You!

{Zt} = Rectify({Xt})

A demon walks where paths cross,
It rewires time, and flows abide.
Continuity’s gift: marginals stay.
Straightness cuts the transport way.
Gaussian blessings shape the score,
Noise refines what came before.
Consistency distills the past,
Reward reshapes the path so fast.
Singular forces carve the rule,
For constraints sharp and data dual.
All these threads, once intertwined,
Are straightened by the flow designed.

– ChatGPT
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