Bless of Gaussian Noise

$$\nabla \log \rho_t(x) = \frac{t v_t(x) - x}{1 - t}$$

$$KL(\rho_1 \mid\mid \rho_1') = \int_0^1 \frac{t}{1 - t} \mathbb{E}\left[\left\|v_t(X_t) - v_t'(X_t)\right\|^2\right] dt.$$

Bless of Gaussian Noise

• When noise X_0 is Gaussian, and the coupling (X_0, X_1) is independent, the RF velocity field is related to the score function.

Velocity field: $v_t(x) = \mathbb{E}[X_1 - X_0 \mid X_t = x],$

Density: $\rho_t(x) = \text{density of } X_t \text{ (and } Z_t),$

Score function: $\nabla \log \rho_t(x)$.

Tweedie's Formula: Let ρ_t be the density of $X_t = tX_1 + (1-t)X_0$. Assume $X_0 \sim \text{Normal}(0, I)$ and $X_0 \perp \!\!\! \perp X_1$, we have

$$\nabla \log \rho_t(x) = \frac{t v_t(x) - x}{1 - t}$$

- Score-based generative models of [SSDK⁺20]
- Has important implications and applications:
 - Likelihood estimation.
 - Training-free conversion to SDE.
 - Distillation and control.

Score Function of Interpolated Variable

Tweedie (General Case): The density ρ_t of $X_t = (1-t)X_0 + tX_1$ satisfies

$$\nabla \log \rho_t(x) = \frac{1}{1-t} \mathbb{E} \left[\nabla_{X_0} \log \rho_{X_0 \mid X_1}(X_0 \mid X_1) \mid X_t = x \right].$$

This holds for any (X_0, X_1) , whenever relevant densities exist & smooth.

Tweedie (Gaussian): When $X_0|X_1 \sim \text{Normal}(0, I)$, we have

$$\nabla_{x} \log \rho_{t}(x) = \mathbb{E}\left[\frac{-X_{0}}{1-t} \mid X_{t} = x\right] / / \nabla \log \rho_{X_{0}|X_{1}}(x_{0}|x_{1}) = -x_{0}$$

$$= \mathbb{E}\left[\frac{t(X_{1} - X_{0}) - X_{t}}{1-t} \mid X_{t} = x\right] / / X_{t} = tX_{1} + (1-t)X_{0}$$

$$= \frac{t \cdot v_{t}(x) - x}{1-t}.$$

Proof.

Proof of Tweedie's Formula (General Case) The density of $X_t = (1-t)X_0 + tX_1$ can be written as

$$\rho_t(x) = \mathbb{E}_{X_1} \left[\rho_{X_0 \mid X_1} \left(\frac{x - tX_1}{1 - t} \mid X_1 \right) \cdot \frac{1}{1 - t} \right].$$

Taking the log and differentiating gives:

$$\nabla_{x} \log \rho_{t}(x) = \frac{\mathbb{E}_{X_{1}} \left[\frac{1}{1-t} \nabla \rho_{X_{0}|X_{1}} \left(\frac{x-tX_{1}}{1-t} \mid X_{1} \right) \right]}{\mathbb{E}_{X_{1}} \left[\rho_{X_{0}|X_{1}} \left(\frac{x-tX_{1}}{1-t} \mid X_{1} \right) \right]}$$
$$= \mathbb{E} \left[\nabla_{X_{0}} \log \rho_{X_{0}|X_{1}} (X_{0}|X_{1}) \mid X_{t} = x \right].$$

86

KL Divergence of Marginals

For any two stochastic processes

- $\{X_t\}$ with marginal ρ_t , RF velocity $v_t(x) = \mathbb{E}\left[\dot{X}_t \mid X_t = x\right]$.
- $\{X_t'\}$ with marginal ρ_t , RF velocity $v_t'(x) = \mathbb{E}\left[\dot{X}_t' \mid X_t' = x\right]$.

We have

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{KL}(\rho_t \mid\mid \rho_t') = \mathbb{E}\left[\left(\nabla \log \rho_t(X_t) - \nabla \log \rho_t'(X_t)\right)^\top \left(v_t(X_t) - v_t'(X_t)\right)\right]$$

$$rac{\mathrm{d}}{\mathrm{dt}}\mathtt{KL} = \mathbb{E}\left[\left\langle \mathtt{score\ difference}, \mathtt{velocity\ difference} \right\rangle \right].$$

KL Divergence of Marginals

For any two stochastic processes

- $\{X_t\}$ with marginal ρ_t , RF velocity $v_t(x) = \mathbb{E}\left[\dot{X}_t \mid X_t = x\right]$.
- $\{X_t'\}$ with marginal ρ_t , RF velocity $v_t'(x) = \mathbb{E}\left[\dot{X}_t' \mid X_t' = x\right]$.

We have

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{KL}(\rho_t \mid\mid \rho_t') = \mathbb{E}\left[\left(\nabla \log \rho_t(X_t) - \nabla \log \rho_t'(X_t)\right)^\top \left(v_t(X_t) - v_t'(X_t)\right)\right]$$

$$\frac{\mathrm{d}}{\mathrm{d}\mathbf{t}}\mathtt{KL} = \mathbb{E}\left[\left\langle \mathtt{score\ difference}, \mathtt{velocity\ difference} \right
angle \right].$$

• If $\nabla \log \rho_t(x) = \frac{tv_t(x) - x}{1 - t}$ and $\nabla \log \rho_t'(x) = \frac{tv_t'(x) - x}{1 - t}$, we can cancel out score function or velocity:

$$\nabla \log \rho_t(\mathbf{x}) - \nabla \log \rho_t'(\mathbf{x}) = \frac{t}{1-t} (\mathbf{v}_t(\mathbf{x}) - \mathbf{v}_t'(\mathbf{x})).$$

KL Divergence of Marginals

For two interpolation processes from different data X_1 and X_1' :

- $X_t = tX_1 + (1-t)X_0$ with $X_0 \perp \!\!\! \perp X_1$ and $X_0 \sim \text{Normal}(0, I)$.
- $X'_t = tX'_1 + (1-t)X'_0$ with $X'_0 \perp \!\!\! \perp X'_1$ and $X'_0 \sim \text{Normal}(0, I)$.

We have

$$KL(\rho_{X_1}||\rho_{X_1'}) = \int_0^1 \frac{t}{1-t} \mathbb{E}\left[\left\|v_t(X_t) - v_t'(X_t)\right\|^2\right] dt$$
$$= \int_0^1 \frac{1-t}{t} \mathbb{E}\left[\left\|\nabla \log \rho_t(X_t) - \nabla \log \rho_t'(X_t)\right\|^2\right] dt.$$

- Connects KL divergence, RF loss, Fisher divergence:
 - Related: JKO Wasserstein gradient flows, De Bruijn's Identity, etc.
- With weight $w_t = \frac{t}{1-t}$, RF training = MLE.
- Applications: Sampling, exponential tilting with Gibbs variational principle.

Likelihood Evaluation

For a given data point x^{eval} , we can derive the following formula for log likelihood:

$$\log \rho_t(\mathbf{x}^{\texttt{eval}}) = \int_0^1 \frac{t}{1-t} \mathbb{E}[\|\dot{X}_t^{\texttt{eval}}\|^2 - \underbrace{\|\dot{X}_t^{\texttt{eval}} - v_t(X_t^{\texttt{eval}})\|^2}_{\texttt{loss on data } \mathbf{x}^{\texttt{eval}}}] dt \quad (*)$$

where $X_t^{\texttt{eval}} = tx^{\texttt{eval}} + (1 - t)X_0$, with $X_0 \sim \texttt{Normal}(0, I)$.

Likelihood Evaluation

For a given data point x^{eval} , we can derive the following formula for log likelihood:

$$\log \rho_t(x^{\text{eval}}) = \int_0^1 \frac{t}{1-t} \mathbb{E}[\|\dot{X}_t^{\text{eval}}\|^2 - \underbrace{\|\dot{X}_t^{\text{eval}} - v_t(X_t^{\text{eval}})\|^2}_{\text{loss on data } x^{\text{eval}}}] dt \quad (*)$$

where $X_t^{\text{eval}} = tx^{\text{eval}} + (1-t)X_0$, with $X_0 \sim \text{Normal}(0, I)$.

Another more common formula: Simultaneous change of variable:

$$\log \rho_t(x^{\texttt{eval}}) = \log \rho_0(z_0^{\texttt{eval}}) - \int_0^1 \nabla \cdot v_t(z_t^{\texttt{eval}}) dt,$$

where $\{z_t^{\text{eval}}\}$ is the solution of $\dot{z}_t^{\text{eval}} = v_t(z_t^{\text{eval}})$ with $z_1^{\text{eval}} = x^{\text{eval}}$.

• Eq. (*) offers a faster computation (avoiding ODE solving), but its accuracy relies on how well v_t is learned.

But let us face the issue of singularity...

• The affine relation of v_t and $\nabla \log \rho_t$:

$$\underbrace{\nabla \log \rho_t(x) = \frac{t v_t(x) - x}{1 - t}}_{\text{singular at } t = 1} \underbrace{v_t(x) = \frac{(1 - t)\nabla \log \rho_t(x) + x}{t}}_{\text{singular at } t = 0}$$

Cause singularity in the formula of KL divergence and log-likelihood.

This is expected, because the ODE can overfit to the delta measure of training data, yielding no finite densities.

Stable Parameterization

Let us exam the boundary conditions carefully [HLX⁺25]:

- At t = 1, $v_1(x) = \mathbb{E}[X_1 X_0 \mid X_1 = x] = x$.
- At t = 0, $\nabla \log \rho_0(x) = -x$, for $\rho_0 \sim \text{Normal}(0, I)$.

Hence, the relation is rewrite into a symmetric form:

$$\underbrace{\frac{v_1(x) - v_t(x)}{1 - t}}_{\text{slope of } v_t} = -\underbrace{\frac{\nabla \log \rho_t(x) - \nabla \log \rho_0(x)}{t}}_{\text{slope of } \nabla \log \rho_t}$$

Stable Parameterization

Let us exam the boundary conditions carefully [HLX⁺25]:

- At t = 1, $v_1(x) = \mathbb{E}[X_1 X_0 \mid X_1 = x] = x$.
- At t = 0, $\nabla \log \rho_0(x) = -x$, for $\rho_0 \sim \text{Normal}(0, I)$.

Hence, the relation is rewrite into a symmetric form:

$$m_t(x) := \underbrace{\frac{v_1(x) - v_t(x)}{1 - t}}_{\text{slope of } v_t} = -\underbrace{\frac{\nabla \log \rho_t(x) - \nabla \log \rho_0(x)}{t}}_{\text{slope of } \nabla \log \rho_t}.$$

All singularities are eliminated when parameterized by m_t :

$$\begin{aligned} v_t(x) &= x + (t-1)m_t(x), \\ \nabla \log \rho_t(x) &= -tm_t(x) - x \\ \mathrm{KL}(\rho_1 \mid\mid \rho_1') &= \int t(1-t)\mathbb{E}\left[\left\|m_t - m_t'\right\|^2\right] \mathrm{d}t. \end{aligned}$$

On the boundaries, $m_t(x)$ models the time-derivatives of v_t and $\nabla \log \rho_t$:

$$m_t(x) := \underbrace{\frac{v_1(x) - v_t(x)}{1 - t}}_{\text{slope of } v_t} = -\underbrace{\frac{\nabla \log \rho_t(x) - \rho_0(x)}{t}}_{\text{slope of } \nabla \log \rho_t}.$$

Taking limit at t = 1 and t = 0:

$$m_1(x) = \partial_t v_t(x)\big|_{t=1}, \qquad m_0(x) = -\partial_t \nabla \log \rho_t(x)\big|_{t=0}.$$

• The rectified flow model yields a finite final density iff $v_t(x)$ is differentiable w.r.t. t at time t = 1:

$$\nabla \log \rho_1(x)$$
 exists $\iff m_1(x) = \partial_t v_t(x)\big|_{t=1}$ exists.

Various Model Parameterizations

```
Velocity field : v_t(x) = \mathbb{E}[X_1 - X_0 \mid X_t]
```

Expected Noise : $\mu_{0,t}(x) = \mathbb{E}[X_0 \mid X_t]$

Expected Data : $\mu_{1,t}(x) = \mathbb{E}[X_1 \mid X_t]$

Score Function : $\nabla \log \rho_t(x) = -\frac{1}{1-t}\mathbb{E}[X_0 \mid X_t]$

Plugging
$$X_t = tX_1 + (1-t)X_0$$
, they are related by
$$\underbrace{v_t(x) = \frac{\mu_{1,t} - x}{1-t} = \frac{x - \mu_{0,t}}{t}}_{\text{holds for any coupling } (X_0, X_1)} = \underbrace{\frac{x + (1-t)\nabla\log\rho_t(x)}{t}}_{\text{only for } X_0 \perp\!\!\!\! \perp X_1, \text{ Gaussian } X_0}.$$

Various Model Parameterizations

Velocity field : $v_t(x) = \mathbb{E}[X_1 - X_0 \mid X_t]$

Expected Noise : $\mu_{0,t}(x) = \mathbb{E}[X_0 \mid X_t]$

Expected Data : $\mu_{1,t}(x) = \mathbb{E}[X_1 \mid X_t]$

Score Function : $\nabla \log \rho_t(x) = -\frac{1}{1-t}\mathbb{E}[X_0 \mid X_t]$

Plugging $X_t = tX_1 + (1-t)X_0$, they are related by

$$v_t(x) = \frac{\mu_{1,t} - x}{1 - t} = \frac{x - \mu_{0,t}}{t} = \frac{x + (1 - t)\nabla \log \rho_t(x)}{t}.$$

Different prediction targets implicitly change the loss weights.

• Predicting velocity:

$$\mathbb{E}\left[\mathbf{w}_{t}\left\|\dot{X}_{t}-v_{t}(X_{t})\right\|^{2}\right]$$

$$\mathbb{E}\left[\frac{w_t}{t^2}\left\|X_0-\mu_{0,t}(X_t)\right\|^2\right]$$

Loss Comparisons

Velocity prediction seems to sever a balanced baseline

Figure: Optimal losses when X_0, X_1 are independent Gaussian.