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E
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]
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Bless of Gaussian Noise
• When noise X0 is Gaussian, and the coupling (X0,X1) is independent,

the RF velocity field is related to the score function.

Velocity field: vt(x) = E[X1 − X0 | Xt = x ],

Density: ρt(x) = density of Xt (and Zt),
Score function: ∇ log ρt(x).

Tweedie’s Formula: Let ρt be the density of Xt = tX1 + (1 − t)X0.
Assume X0 ∼ Normal(0, I ) and X0 ⊥⊥ X1, we have

∇ log ρt(x) =
tvt(x)− x

1 − t

• Score-based generative models of [SSDK+20]
• Has important implications and applications:

• Likelihood estimation.
• Training-free conversion to SDE.
• Distillation and control.
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Score Function of Interpolated Variable

Tweedie (General Case): The density ρt of Xt = (1−t)X0+tX1 satisfies

∇ log ρt(x) =
1

1 − t
E
[
∇X0 log ρX0|X1(X0 | X1)

∣∣Xt = x
]
.

This holds for any (X0,X1), whenever relevant densities exist & smooth.

Tweedie (Gaussian): When X0|X1 ∼ Normal(0, I ), we have

∇x log ρt(x) = E
[
−X0

1 − t
| Xt = x

]
//∇ log ρX0|X1(x0|x1) = −x0

= E
[
t(X1 − X0)− Xt

1 − t
| Xt = x

]
//Xt = tX1 + (1 − t)X0

=
t · vt(x)− x

1 − t
.
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Proof.
Proof of Tweedie’s Formula (General Case) The density of
Xt = (1 − t)X0 + tX1 can be written as

ρt(x) = EX1

[
ρX0|X1

(
x − tX1

1 − t

∣∣∣∣X1

)
· 1
1 − t

]
.

Taking the log and differentiating gives:

∇x log ρt(x) =
EX1

[
1

1−t ∇ρX0|X1

(
x−tX1
1−t

∣∣∣X1

)]
EX1

[
ρX0|X1

(
x−tX1
1−t

∣∣∣X1

)]
= E

[
∇X0 log ρX0|X1(X0|X1) | Xt = x

]
.
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KL Divergence of Marginals

For any two stochastic processes

• {Xt} with marginal ρt , RF velocity vt(x) = E
[
Ẋt | Xt = x

]
.

• {X ′
t} with marginal ρt , RF velocity v ′t(x) = E

[
Ẋ ′
t | X ′

t = x
]
.

We have

d
dt

KL(ρt || ρ′t) = E
[
(∇ log ρt(Xt)−∇ log ρ′t(Xt))

⊤(vt(Xt)− v ′t(Xt))
]

d
dt

KL = E [⟨score difference, velocity difference⟩] .

• If ∇ log ρt(x) =
tvt(x)−x

1−t and ∇ log ρ′t(x) =
tv ′

t (x)−x
1−t , we can cancel out

score function or velocity:

∇ log ρt(x)−∇ log ρ′t(x) =
t

1 − t
(vt(x)− v ′t(x)).
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KL Divergence of Marginals

For two interpolation processes from different data X1 and X ′
1:

• Xt = tX1 + (1 − t)X0 with X0 ⊥⊥ X1 and X0 ∼ Normal(0, I ).

• X ′
t = tX ′

1 + (1 − t)X ′
0 with X ′

0 ⊥⊥ X ′
1 and X ′

0 ∼ Normal(0, I ).
We have

KL(ρX1 ||ρX ′
1
) =

∫ 1

0

t

1 − t
E
[∥∥vt(Xt)− v ′t(Xt)

∥∥2
]
dt

=

∫ 1

0

1 − t

t
E
[∥∥∇ log ρt(Xt)−∇ log ρ′t(Xt)

∥∥2
]
dt.

• Connects KL divergence, RF loss, Fisher divergence:
• Related: JKO Wasserstein gradient flows, De Bruijn’s Identity, etc.

• With weight wt =
t

1−t , RF training = MLE.
• Applications: Sampling, exponential tilting with Gibbs variational

principle.
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Likelihood Evaluation

For a given data point xeval, we can derive the following formula for log
likelihood:

log ρt(x
eval) =

∫ 1

0

t

1 − t
E[∥Ẋ eval

t ∥2 − ∥Ẋ eval
t − vt(X

eval
t )∥2︸ ︷︷ ︸

loss on data xeval

]dt (*)

where X eval
t = txeval + (1 − t)X0, with X0 ∼ Normal(0, I ).

Another more common formula: Simultaneous change of variable:

log ρt(x
eval) = log ρ0(z

eval
0 )−

∫ 1

0
∇· vt(zevalt )dt,

where {zevalt } is the solution of żevalt = vt(z
eval
t ) with zeval1 = xeval.

• Eq. (*) offers a faster computation (avoiding ODE solving), but its
accuracy relies on how well vt is learned.
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But let us face the issue of singularity...

• The affine relation of vt and ∇ log ρt :

∇ log ρt(x) =
tvt(x)− x

1 − t︸ ︷︷ ︸
singular at t = 1

vt(x) =
(1 − t)∇ log ρt(x) + x

t︸ ︷︷ ︸
singular at t = 0

.

Cause singularity in the formula of KL divergence and log-likelihood.

This is expected, because the ODE can overfit to
the delta measure of training data, yielding no
finite densities.
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Stable Parameterization
Let us exam the boundary conditions carefully [HLX+25]:
• At t = 1, v1(x) = E [X1 − X0 | X1 = x ] = x .
• At t = 0, ∇ log ρ0(x) = −x , for ρ0 ∼ Normal(0, I ).

Hence, the relation is rewrite into a symmetric form:

mt(x) :=

v1(x)− vt(x)

1 − t︸ ︷︷ ︸
slope of vt

= − ∇ log ρt(x)−∇ log ρ0(x)

t︸ ︷︷ ︸
slope of ∇ log ρt

.

All singularities are eliminated when parameterized by mt :

vt(x) = x + (t − 1)mt(x),

∇ log ρt(x) = −tmt(x)− x

KL(ρ1 || ρ′1) =
∫

t(1 − t)E
[∥∥mt −m′

t

∥∥2
]
dt.
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On the boundaries, mt(x) models the time-derivatives of vt and ∇ log ρt :

mt(x) :=
v1(x)− vt(x)

1 − t︸ ︷︷ ︸
slope of vt

= − ∇ log ρt(x)− ρ0(x)

t︸ ︷︷ ︸
slope of ∇ log ρt

.

Taking limit at t = 1 and t = 0:

m1(x) = ∂tvt(x)
∣∣
t=1, m0(x) = −∂t∇ log ρt(x)

∣∣
t=0.

• The rectified flow model yields a finite final density iff vt(x) is
differentiable w.r.t. t at time t = 1:

∇ log ρ1(x) exists ⇐⇒ m1(x) = ∂tvt(x)
∣∣
t=1 exists.
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Various Model Parameterizations

Velocity field : vt(x) = E[X1 − X0 | Xt ]

Expected Noise : µ0,t(x) = E[X0 | Xt ]

Expected Data : µ1,t(x) = E[X1 | Xt ]

Score Function : ∇ log ρt(x) = − 1
1 − t

E[X0 | Xt ]

Plugging Xt = tX1 + (1 − t)X0, they are related by

vt(x) =
µ1,t − x

1 − t
=

x − µ0,t

t︸ ︷︷ ︸
holds for any coupling (X0,X1)

=
x + (1 − t)∇ log ρt(x)

t︸ ︷︷ ︸
only for X0 ⊥⊥ X1, Gaussian X0

.

vt(x) =
µ1,t − x

1 − t
=

x − µ0,t

t
=

x + (1 − t)∇ log ρt(x)

t
.

Different prediction targets implicitly change the loss weights.

• Predicting velocity:

E
[
wt

∥∥∥Ẋt − vt(Xt)
∥∥∥2
] ⇐⇒

• Predicting noise:

E
[wt

t2
∥X0 − µ0,t(Xt)∥2

]
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Loss Comparisons

• Velocity prediction seems to sever a balanced baseline

Figure: Optimal losses when X0,X1 are independent Gaussian.
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