Interpolation

Deform(Rectify({X;})) = Rectify(Deform({X;}))
NaturalEulerRF(Transform({X:})) = Transform(NaturalEulerRF({X:}))

65

Key Property: Equivariance to Deformation

® The interpolation X; can be any smooth (deterministic or randomized)
process connecting Xo and Xj.

® Most methods are equivalent to using Affine Interpolations.

Affine Interpolations

Xe = o X1 + B Xo, with a9 =51 =0,01 = =1.

e Straight trajectories only when a; + 8 = 1.
® Variance Preserving (VP) interpolation: a? + 32 = 1.

e DDPM/DDIM [HJA20, SME20], VP-SDE/ODE [SSDK™20]:

ar =exp (=5(1 — t)> = 0.05(1 —t)), Br=1/1—0a?,

® Spherical linear interpolation (slerp) [ND21]:

ay = sin(gt), B = cos(gt).

66

Straight Interpolation
Xe =tX1+ (1 - t)Xo
® Straight trajectories

® Not unit variance

Slerp Interpolation
X¢ = cos(mt/2) X1 + sin(7t/2)Xo
e Curved trajectories

e Unit variance

67

Equivalence of Deformed Interpolations

e Let {X;} and {X{} be two interpolation processes from the same
coupling, and {Z;}, {Z]} be their rectified flows:

{Z:} =Rectify({X:}), {Z} = Rectify({X(}).

Assume X; and X{ are related by an invertible pointwise
transformation:

Xi = ¢e(Xr)-
® Then the same transformation applies to their rectified flows:

ZI{ = ¢t(ZTt)'

® Their velocities can be transformed by:

Vi(x) = Be0e(67 (%)) + (Ve(d72(x))) " vr (67 1(x)) 7.

[Deform(Rectify({X:})) = Rectify(Deform({X:}))]

68

[Deform(Rectify({X:})) = Rectify(Deform({X;}))]

® |ntuition: trajectory rewiring is equivariant under point-wise

deformation.

Interpolation {X,}

Rectify({X;})

Rectified Flow {Z;}

Transform({X,})
6e(Xr,)
Interpolation {X/}
Rectify({X/})
Transform({Z})
0u(Zr,)

Rectified Flow {Z]}

69

Equivalence of Deformed Interpolations

70

Proof (assume ¢:(x;,) = ¢(x) for simplicity).
1) By definition, the velocity field v; of {Z]} = Rectify({X[}) is

vi(x) =E X,_f | X{ = x}

[d
— B | 000 | 60%) = x|

_E :Vqﬁ(Xt)TXt | X, = ¢_1(x)}
= V(¢ 1 (x)) " ve(¢ (%)) //ve(x) = E[X¢| Xe = x]

2) For Z]' = ¢(Z;), we compute:

Z! = %QS(Zt) =V§(Z:)" Z; = V§(Z:) ve(Zy)

=Ve(s~1(Z) " ve(oH(ZY))
=v{(Z}),

Hence, Z] and Z/ coincides.

71

Affine Case: Time-Variable Scaling Transform

Pointwise Transform between Affine Interpolations

¢ Consider two affine interpolations from the same coupling (Xo, X1):

X = o X1 + B Xo, Xi = o X1 + B Xo.

® Then {X;:} and {X]} are time-wrapping and scaling of each other:

1
X =—X,, vt € [0,1].
f}/

t

® The time-warp 7+ and rescaling factor +; are found by solving:

/
aTr _ at _ aTt _ BTt
- a1 'Yt - ;) /)
Br. t Qi t

with 9 =0, 71 =1, Y= =1.

vt € (0,1),

72

Example: Straight Flows to Affine Flows
Converting the straight interpolation X; = tX; + (1 — t)Xp with oy = t
and B = 1 — t into another affine interpolation X{ = ;X1 + 8 Xo gives:

ol 1
= —————, = —,
Tt p T at B
The velocity of affine flow:
<1 Ql ! Qr Y o]
1oy OBy — ay By &y + By
Vt(X) - aé‘i‘ﬁé VTt(’th) + 04_’_/32 .

Straight to Spherical Transform
1.0

0.8

0.6

Value

0.4

0.2

0.0
73

Key Property: Equivariance Under Numerical Methods

e Although different affine interpolations yield equivalent rectified flow
ODEs, in practice we must solve them numerically.

e Euler method approximates trajectories with straight segments.
e Curved segments updates naturally arise in curved interpolations.

Natural Euler Method
Given an interpolation scheme X; = I:(Xp, X1), define the update:

2t = Ii“,'Jrl()A<0|tl'7)A(llti)7
where (>A<o\t,-,>A<1|t,-) are expected noise and data at time t; that match
{21‘,' = It,'()?oltﬂ)?l‘t;)?

Vt;<2t,-) = atIt(>A<0|t,-7)?1|t,-) o

— =

DDIM [SME20] as Natural Euler method

® DDIM employs a time-scaled spherical interpolation during training.

® DDIM inference scheme is an instance of the Natural Euler method.
Zire = arye ')A<1|t(2t) + Br+e '>A<o|t(2t)

. atfBete — Oét+eBt2 4 QrieBt — atPrie v (2)
. 0 t t

= B t .
e — aPBe B — a Bt

75

Intuition: Natural Euler Method

® The Natural Euler update is equivalent to:

Deform™ !(Euler(Deform(Z))

Interp A

\l’\ Straight Interp
\\ \Y} Interp B

I

76

Equivalence of Natural Euler Trajectories

e Let {X:} and {X]} be two interpolation processes from the same
coupling, related by an invertible, time-dependent transform:

X! = ¢:(X5,).
e Let {Z;} and {2;,} be their discrete natural Euler trajectories on grids
{ti} and {t}:
2&' = NaturalEuler({X:}, {ti}), 2;// = NaturalEuler({X;}, {t/}).
e |f the time grids align such that 7(t!) = ¢;, then the discrete
trajectories match under the same transform:

t/ = ¢y (Z:), Vi
® The final states always match, even if the paths differ:

2Z=2l

[NaturalEulerRF(Transform({X;})) = Transform(NaturalEulerRF({X;}))]

7

Example: Equivalence of Natural Euler method up to time rescaling
The following are equivalent:

® Natural Euler on X; = a;Xj + (:Xo, on grid tj =i/n.

® Vanilla Euler on X; = tX; + (1 —t)Xp, on grid t; =

Aj/n

O‘i/n"‘ﬂi/n ’

78

Curved x Curved = Straight: DDIM is Straight RF

e DDIM: Natural Euler sampler under spherical interpolation.
e RF: (Natural) Euler sampler under straight interpolation.

e DDIM “curved twice”, but is equivalent to the standard
Euler on straight RF with rescaled time.

DDIM = Deform o Euler o Deform™* o Rectify o Deform({X;})
= Deform o Euler o Rectify({X:}).

Different discretization time grids, same result.

79

Equivalent to Shifting and Scaling

® Applying shifting and scaling on the noise or data induces a transform
on the RF trajectories.

[Shift(Rectify({X:})) = Rectify(Shift({X}))]

Rectify({X:})
S

1 shift({X,}) Shift({Z}) 1

Rectify({X;})
—

80

Implication on Loss weights

® So far, we have assumed the model is perfectly trained.

® How does the choice of interpolation scheme affect training?

Loss weights during training
Learn a model v;(x; @) with an interpolation X; = X1 + 5:Xo, by

.c(e):/olxa [wt

It's equavalent to use another interpolation scheme X{ = /X1 + 8:Xp
during training, but with the time-weighting and parameterization of:

. 2
Xy — vt(Xt;Q)H } dt,

2 :
! Yt / Tt
= T Wy ?9 = — VY ;9
Wy tw Vt(X) tv (X

)= Tox

V't

e Changing the interpolation scheme during training implicitly alters the
loss weights and network parameterization.

81

Equivalence: Takeaways

Different methods lead to:
e different time-dependent loss weightings during training,
e different step size schedules during inference.

Open Questions
® How can we choose loss weights in a principled way?
® How should the inference scheme be determined during training?

® Related: Discussions on the equivalence between flow and
diffusion [GHH'24, KAAL22, KG23, SPC*23], and on how to choose
loss weights and time grids [Die24].

82

	Interpolation

	fd@interpVideoR:
	fd@interpVideoL:
	anm15:
	15.47:
	15.46:
	15.45:
	15.44:
	15.43:
	15.42:
	15.41:
	15.40:
	15.39:
	15.38:
	15.37:
	15.36:
	15.35:
	15.34:
	15.33:
	15.32:
	15.31:
	15.30:
	15.29:
	15.28:
	15.27:
	15.26:
	15.25:
	15.24:
	15.23:
	15.22:
	15.21:
	15.20:
	15.19:
	15.18:
	15.17:
	15.16:
	15.15:
	15.14:
	15.13:
	15.12:
	15.11:
	15.10:
	15.9:
	15.8:
	15.7:
	15.6:
	15.5:
	15.4:
	15.3:
	15.2:
	15.1:
	15.0:
	fd@interpVideoR:
	fd@interpVideoL:
	anm14:
	14.39:
	14.38:
	14.37:
	14.36:
	14.35:
	14.34:
	14.33:
	14.32:
	14.31:
	14.30:
	14.29:
	14.28:
	14.27:
	14.26:
	14.25:
	14.24:
	14.23:
	14.22:
	14.21:
	14.20:
	14.19:
	14.18:
	14.17:
	14.16:
	14.15:
	14.14:
	14.13:
	14.12:
	14.11:
	14.10:
	14.9:
	14.8:
	14.7:
	14.6:
	14.5:
	14.4:
	14.3:
	14.2:
	14.1:
	14.0:
	anm13:
	13.39:
	13.38:
	13.37:
	13.36:
	13.35:
	13.34:
	13.33:
	13.32:
	13.31:
	13.30:
	13.29:
	13.28:
	13.27:
	13.26:
	13.25:
	13.24:
	13.23:
	13.22:
	13.21:
	13.20:
	13.19:
	13.18:
	13.17:
	13.16:
	13.15:
	13.14:
	13.13:
	13.12:
	13.11:
	13.10:
	13.9:
	13.8:
	13.7:
	13.6:
	13.5:
	13.4:
	13.3:
	13.2:
	13.1:
	13.0:
	anm12:
	12.39:
	12.38:
	12.37:
	12.36:
	12.35:
	12.34:
	12.33:
	12.32:
	12.31:
	12.30:
	12.29:
	12.28:
	12.27:
	12.26:
	12.25:
	12.24:
	12.23:
	12.22:
	12.21:
	12.20:
	12.19:
	12.18:
	12.17:
	12.16:
	12.15:
	12.14:
	12.13:
	12.12:
	12.11:
	12.10:
	12.9:
	12.8:
	12.7:
	12.6:
	12.5:
	12.4:
	12.3:
	12.2:
	12.1:
	12.0:
	anm11:
	11.39:
	11.38:
	11.37:
	11.36:
	11.35:
	11.34:
	11.33:
	11.32:
	11.31:
	11.30:
	11.29:
	11.28:
	11.27:
	11.26:
	11.25:
	11.24:
	11.23:
	11.22:
	11.21:
	11.20:
	11.19:
	11.18:
	11.17:
	11.16:
	11.15:
	11.14:
	11.13:
	11.12:
	11.11:
	11.10:
	11.9:
	11.8:
	11.7:
	11.6:
	11.5:
	11.4:
	11.3:
	11.2:
	11.1:
	11.0:
	anm10:
	10.39:
	10.38:
	10.37:
	10.36:
	10.35:
	10.34:
	10.33:
	10.32:
	10.31:
	10.30:
	10.29:
	10.28:
	10.27:
	10.26:
	10.25:
	10.24:
	10.23:
	10.22:
	10.21:
	10.20:
	10.19:
	10.18:
	10.17:
	10.16:
	10.15:
	10.14:
	10.13:
	10.12:
	10.11:
	10.10:
	10.9:
	10.8:
	10.7:
	10.6:
	10.5:
	10.4:
	10.3:
	10.2:
	10.1:
	10.0:
	anm9:
	9.19:
	9.18:
	9.17:
	9.16:
	9.15:
	9.14:
	9.13:
	9.12:
	9.11:
	9.10:
	9.9:
	9.8:
	9.7:
	9.6:
	9.5:
	9.4:
	9.3:
	9.2:
	9.1:
	9.0:
	anm8:
	8.19:
	8.18:
	8.17:
	8.16:
	8.15:
	8.14:
	8.13:
	8.12:
	8.11:
	8.10:
	8.9:
	8.8:
	8.7:
	8.6:
	8.5:
	8.4:
	8.3:
	8.2:
	8.1:
	8.0:
	anm7:
	7.19:
	7.18:
	7.17:
	7.16:
	7.15:
	7.14:
	7.13:
	7.12:
	7.11:
	7.10:
	7.9:
	7.8:
	7.7:
	7.6:
	7.5:
	7.4:
	7.3:
	7.2:
	7.1:
	7.0:
	anm6:
	6.19:
	6.18:
	6.17:
	6.16:
	6.15:
	6.14:
	6.13:
	6.12:
	6.11:
	6.10:
	6.9:
	6.8:
	6.7:
	6.6:
	6.5:
	6.4:
	6.3:
	6.2:
	6.1:
	6.0:
	anm5:
	5.19:
	5.18:
	5.17:
	5.16:
	5.15:
	5.14:
	5.13:
	5.12:
	5.11:
	5.10:
	5.9:
	5.8:
	5.7:
	5.6:
	5.5:
	5.4:
	5.3:
	5.2:
	5.1:
	5.0:
	anm4:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	anm3:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

