Transport Cost

 $TransportCost(Rectify({X_t})) \le TransportCost({X_t}).$

Key Property: Transport Cost

Rectified Flow reduces all convex transport costs

If $\{Z_t\} = \mathtt{Rectify}(\{X_t\})$, then

$$\mathbb{E}\left[c(Z_1-Z_0)\right] \leq \mathbb{E}\left[c(X_1-X_0)\right], \quad \text{ for all convex functions } c$$

Intuition: Untangling Crossings Reduces Transport Cost

$$\mathbb{E}\left[\|X_0 - X_1\|\right] = \mathsf{Length}\left(\mathbf{Z}\right) = \mathsf{Length}\left(\mathbf{Z}\right) \geq \mathsf{Length}\left(\mathbf{Z}\right) = \mathbb{E}\left[\|Z_0 - Z_1\|\right],$$

Key Property: Rectified Flow Reduces Transport Cost

Reducing Transport Cost:

$$\mathbb{E}\left[c(Z_1-Z_0)\right] \leq \mathbb{E}\left[c(X_1-X_0)\right],$$
 for all convex functions c

Proof

Apply Jensen's inequality + marginal preservation.

$$\begin{split} \mathbb{E}\left[c(Z_1-Z_0)\right] &= \mathbb{E}\left[c\left(\int_0^1 v^X(Z_t,t)\mathrm{d}t\right)\right] \qquad //\text{as } \mathrm{d}Z_t = v^X(Z_t,t)\mathrm{d}t \\ &\leq \mathbb{E}\left[\int_0^1 c\left(v^X(Z_t,t)\right)\mathrm{d}t\right] \qquad //\text{convexity of } c\text{, Jensen's inequality} \\ &= \mathbb{E}\left[\int_0^1 c\left(v^X(X_t,t)\right)\mathrm{d}t\right] \qquad //X_t \text{ and } Z_t \text{ shares the same marginals} \\ &= \mathbb{E}\left[\int_0^1 c\left(\mathbb{E}\left[(X_1-X_0)\mid X_t\right]\right)\mathrm{d}t\right] \qquad //\text{definition of } v^X \\ &\leq \mathbb{E}\left[\int_0^1 \mathbb{E}\left[c\left(X_1-X_0\right)\mid X_t\right]\mathrm{d}t\right] \qquad //\text{convexity of } c\text{, Jensen's inequality} \\ &= \int_0^1 \mathbb{E}\left[c\left(X_1-X_0\right)\right]\mathrm{d}t \qquad //\mathbb{E}\left[\mathbb{E}\left[(X_1-X_0)\mid X_t\right]\right] = \mathbb{E}\left[(X_1-X_0)\right] \\ &= \mathbb{E}\left[c\left(X_1-X_0\right)\right]. \end{split}$$

Key Property: Rectified Flow Reduces Transport Cost

Reducing Transport Cost:

$$\mathbb{E}\left[c(Z_1-Z_0)\right] \leq \mathbb{E}\left[c(X_1-X_0)\right],$$
 for all convex functions c

Proof

Key: averaging the slope \dot{X}_t given X_t reduces the transport cost:

$$\begin{split} \int_0^1 \mathbb{E} \left[c \left(\dot{X}_t \right) \right] \mathrm{d}t &= \int_0^1 \mathbb{E} \left[\mathbb{E} \left[c \left(\dot{X}_t \right) \mid X_t \right] \right] \mathrm{d}t \\ &\geq \int_0^1 \mathbb{E} \left[c \left(\mathbb{E} \left[\dot{X}_t \mid X_t \right] \right) \right] \mathrm{d}t \\ &\geq \int_0^1 \mathbb{E} \left[c \left(v_t(X_t) \right) \right] \mathrm{d}t \\ &\geq \int_0^1 \mathbb{E} \left[c \left(v_t(Z_t) \right) \right] \mathrm{d}t. \end{split}$$

Key Property: Reflow and Straightening Effect

• The "straightness" (more precisely, geodesicity) of a smooth random process $\mathbf{Z} = \{Z_t \colon t \in [0,1]\}$ can be measured by

$$S(\mathbf{Z}) = \int_0^1 \mathbb{E} \left\| \dot{Z}_t - (Z_1 - Z_0) \right\|^2 \mathrm{d}t.$$

//Equivalent to the variance of \dot{Z}_t along the trajectory.

$$S(\mathbf{Z}) = 0 \iff S$$
traight trajectories $Z_t = tZ_1 + (1-t)Z_0 \iff ODE$ solved with one Euler step.

Key Property: Straightening

Following the iterative reflow, we have

$$\{Z_t^{k+1}\} = \mathtt{Rectify}(\mathtt{Interp}(Z_0^k, Z_1^k)) \implies \min_{k \leq K} S(\{Z_t^k\}) = \mathcal{O}\left(\frac{1}{K}\right).$$

• At the fixed point, $S(\mathbf{Z}^{\infty}) = 0$ and the rectified flow is straight.

54

Key Property: Straightening

• Following the iterative reflow, we have

$$\{Z_t^{k+1}\} = ext{Rectify}(ext{Interp}(Z_0^k, Z_1^k)) \implies \min_{k \leq K} S(\{Z_t^k\}) = \mathcal{O}\left(rac{1}{K}
ight).$$

• At the fixed point, $S(\mathbf{Z}^{\infty}) = 0$ and the rectified flow is straight.

Proof.

We can show that

$$S(\lbrace Z_t^k\rbrace) \leq \mathbb{E}\left[\left\|Z_1^{k-1} - Z_0^{k-1}\right\|^2\right] - \mathbb{E}\left[\left\|Z_1^k - Z_0^k\right\|^2\right]$$

Telescoping summing on k = 0, ..., K gives

$$\sum_{k=1}^{K} S(Z^{k}) \leq \mathbb{E}\left[\|X_{1} - X_{0}\|^{2}\right].$$

Rectify as Alternative Projection

- Interpolation: enforcing straightness.
- Fitting: enforcing ODE

- In practice, one reflow already very straight transport, as shown in InstaFlow [LZM+23].
- In fact, difficult to find counter examples when reflow is not straight.

Open Question

• When is one reflow sufficient? [Liu22, RBSR24]

Straight vs. Optimal Transport

Straight Transport = Iterative Rewiring
Optimal Transport = Iterative Rewiring + Derotation.

Straight vs. Optimal Couplings

- *c*-optimal couplings: solutions of min $\mathbb{E}[c(Z_1 Z_0)]$.
- Straight couplings: the fixed points of the reflow procedure, i.e., $(X_0, X_1) = \text{Rectify}((X_0, X_1))$.
- In R, c-optimal couplings = straight couplings = the unique monotonic coupling.
- In \mathbb{R}^d $(d \ge 2)$, c-optimal couplings \subseteq straight couplings.
- Rectify(·) conducts a kind of multi-objective optimization
 - Tries to decrease the transport for all convex c simultaneously.
 - Can not fully optimize all as different loss functions can be conflicting.

Optimal coupling

Straight, but non-optimal coupling

c-Targeted Rectified Flow

- What if we want to solve the c-optimal transport (OT) problem for a specific c?
 - For example, the standard L2-OT: $c(x) = ||x||^2$

$$\min_{(X_0,X_1)} \mathbb{E}\left[\left\|X_1 - X_0\right\|^2\right], \quad \text{ s.t. } \quad \operatorname{Law}(X_0) = \pi_0, \ \operatorname{Law}(X_1) = \pi_1.$$

 Key: in addition to rewiring trajectories (rectify), we also need to remove the rotational component.

Rectified Flow Targeting $c(x) = \frac{1}{2} ||x||^2$.

Simply restrict the velocity v to be a gradient field ∇f :

$$\dot{Z}_t = \nabla f(Z_t, t), \quad Z_0 = X_0,$$

where f is the solution of

$$\min_{f} \int_{0}^{1} \mathbb{E} \|(X_{1} - X_{0}) - \nabla f(X_{t}, t)\|^{2} dt.$$

Yields a Helmholtz decomposition on RF velocity v_t:

 Related to Knott-Smith and Brenier Theorem, and Benamou-Brenier formula, Hamilton-Jacobi equation, etc

Helmholtz Decomposition

(Weighted) Helmholtz Decomposition: Given a smooth density ρ , any smooth vector field $v \colon \mathbb{R}^d \to \mathbb{R}^d$ admits a decomposition:

$$v(x) = \nabla f(x) + r(x), \text{ with } \nabla \cdot (r\rho) = 0.$$

- r is divergence-free (rotational) w.r.t. density ρ .
- The gradient field ∇f captures all divergence (w.r.t. ρ).
- It is an orthogonal decomposition:

$$\mathbb{E}_{\rho}[\nabla f(x)^{\top} r(x)] = 0.$$

Proof of Weighted Helmholtz Decomposition.

Problem 1. Approximating v with the best gradient field ∇f :

$$\min_{f} \mathbb{E}_{\rho}[\|v(x) - \nabla f(x)\|^{2}].$$

Problem 2. Approximating v with the best divergence-free field:

$$\min_{r} \mathbb{E}_{\rho}[\|v(x) - r(x)\|^2]$$
 s.t. $\nabla \cdot (r\rho) = 0$.

These two problems are duality of each other, both equivalent to

$$\max_{f} \min_{r} \mathbb{E}\left[\|v(x) - r(x)\|^2 + 2\nabla f(x)^{\top} r(x)\right].$$

As they are convex optimization, there always exist solutions, which can be shown to coincides with Helmholtz decomposition.

Removing the rotational components preserves the marginals while decreasing transport cost

Let $\{Z'_t\}$ be the ODE obtained by removing the rotational part from $\{Z_t\}$:

$$\frac{\mathrm{d}}{\mathrm{d}t}Z_t = v_t(Z_t), \qquad \frac{\mathrm{d}}{\mathrm{d}t}Z_t' = \nabla f_t(Z_t'). \quad Z_0 = Z_0'.$$

where v_t yields Helmholtz decomposition:

$$v_t(x) = \nabla f_t(x) + r_t(x), \quad \text{with} \quad \nabla \cdot (r_t \rho_t) = 0.$$

1) Marginal preservation:

$$\text{Law}(Z_t) = \text{Law}(\tilde{Z}_t)$$
 for all time t .

2) Transport cost reduction:

$$\int \|\dot{Z}_t'\|^2 \mathrm{d}t \le \int \|\dot{Z}_t\|^2 \mathrm{d}t.$$

Proof.

1) Marginal preserves as the rotational field does not contribute to the continuity equation:

$$\partial_t \rho_t = -\nabla \cdot (\mathbf{v}_t \rho_t) = -\nabla \cdot (\nabla f_t \rho_t) - \underbrace{\nabla \cdot (\mathbf{r}_t \rho_t)}_{=0} = -\nabla \cdot (\nabla f_t \rho_t).$$

2) Cost reduces to due to the orthogonality.

$$\begin{split} \int \mathbb{E} \left[\| \dot{Z}_t \|^2 \right] \mathrm{d}t &= \int \mathbb{E} \left[\| \nabla f_t(Z_t) + r_t(Z_t) \|^2 \right] \mathrm{d}t \\ &= \int \mathbb{E} \left[\| \nabla f_t(Z_t) \|^2 + \| r_t(Z_t) \|^2 \right] \mathrm{d}t \quad \text{//orthogonality: } \mathbb{E} \left[\nabla f_t(Z_t)^\top r_t(Z_t) \right] = 0 \\ &\geq \int \mathbb{E} \left[\| r_t(Z_t) \|^2 \right] \mathrm{d}t \\ &= \int \mathbb{E} \left[\| r_t(Z_t') \|^2 \right] \mathrm{d}t \quad \text{//Marginal preservation } \mathrm{Law}(Z_t) = \mathrm{Law}(Z_t') \\ &= \int \mathbb{E} \left[\| \dot{Z}_t' \|^2 \right] \mathrm{d}t. \end{split}$$

Rectified Flow Targeting general convex c: min $\mathbb{E}\left[c(X_1-X_0)\right]$

$$\dot{Z}_t = \nabla c^*(\nabla f(Z_t, t)), \quad Z_0 = X_0,$$

where v^X minimizes a Fenchel-Young divergence:

$$\min_{f} \int_0^1 \mathbb{E}\left[c^*(\nabla f(X_t,t)) - (X_1 - X_0)^\top \nabla f(X_t,t) + c(X_1 - X_0)^2\right] dt.$$

where $c^*(x) := \sup_{y} \{x^\top y - c(y)\}$ is the convex conjugate of c.

- Related: matching loss, Bregman divergence
- Generalized Helmholtz decomposition: $v_t = \nabla c^*(\nabla f_t) + r_t$
- Only decreases this specific c
- Fixed point \iff *c*-optimal.
- Reflow can be viewed as a special coordinate descent on dynamic OT