Marginal Preservation

```
\texttt{Marginals}(\texttt{Rectify}(\{X_t\})) = \texttt{Marginals}(\{X_t\})
```

The Rectify (\cdot) Operator

Definition. For any stochastic process $\{X_t\}$, its rectified flow, denoted as

$${Z_t} = \text{Rectify}({X_t}),$$

is the ODE process:

$$\dot{Z}_t = v_t(Z_t)$$
, initialized from $Z_0 = X_0$,

with velocity field

$$v_t(x) = \mathbb{E} \left| \dot{X}_t \mid X_t = x \right|.$$

Assume the ODE solution exists and unique.

Theme: Understanding and exploiting the Rectify(·) operator.

Basis

• A random variable is a measurable map from a random seed ω to a value:

$$X = X(\omega), \qquad \omega \sim \mathsf{P}^{\omega}.$$

- This induces a **distribution** (law) of X, denoted by P = Law(X).
- A stochastic process is a map from $(\omega, time)$ to values:

$$X_t = X(\omega, t).$$

- It induces a **path measure** P on the space of trajectories, and a time marginal $P_t = \text{Law}(X_t)$.
- The process is said to have time-differentiable trajectories if the time derivative exists:

$$\dot{X}_t = \partial_t X(\omega, t)$$
 exists.

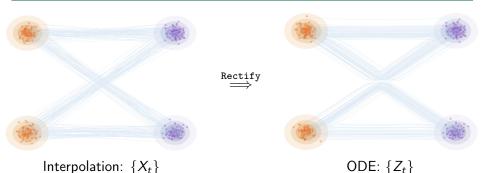
Key Property: Marginal Preservation

Marginal Preservation

The rectified flow preserves marginal distributions:

$$\{Z_t\} = \mathtt{Rectify}(\{X_t\}) \quad \Longrightarrow \quad \pi_t = \mathtt{Law}(X_t) = \mathtt{Law}(X_t).$$

Therefore, if (X_0, X_1) is a coupling π , then so is (Z_0, Z_1) .



 $\texttt{Marginals}(\texttt{Rectify}(\{X_t\})) = \texttt{Marginals}(\{X_t\})$

Key Property: Marginal Preservation

$${\tt Marginals}({\tt Rectify}(\{X_t\})) = {\tt Marginals}(\{X_t\})$$

Intuition: Marginal Preserving

- Rewiring changes only the flow directions.
- The total flow in/out of each space-time point remains unchanged.

$$\mathsf{Flow} \bigg(igotimes_t \bigg) = \mathsf{Flow} \bigg(igotimes_t \bigg), orall \mathsf{time} \ \& \ \mathsf{location} \Longrightarrow \mathrm{Law}(Z_t) = \mathrm{Law}(X_t), orall t.$$



Continuity Equation: For Smooth Processes

Let $\{X_t\}$ be any stochastic process with smooth trajectories. Define

RF velocity field:
$$v_t(x) = \mathbb{E}\left[\dot{X}_t \mid X_t = x\right].$$

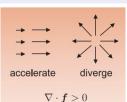
Then the marginal density ρ_t of X_t satisfies the continuity equation:

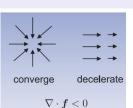
$$\underbrace{\partial_t \rho_t(\mathbf{x})}_{\text{rate of change}} = -\underbrace{\nabla \cdot \left(v_t(\mathbf{x}) \rho_t(\mathbf{x}) \right)}_{\text{divergence of flux}}.$$

 Holds for general processes with smooth trajectories: ODE/non-ODE, Markov/non-Markov, deterministic/stochastic.

 Divergence of a vector field v: R^d → R^d:

$$\nabla \cdot v(x) = \operatorname{Trace}(\nabla v(x)).$$





Proof.

For any compactly support, smooth test function h:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \mathbb{E}\left[h(X_t)\right] &= \mathbb{E}\left[\nabla h(X_t)^\top \dot{X}_t\right] \\ &= \mathbb{E}\left[\nabla h(X_t)^\top \mathbb{E}\left[\dot{X}_t | X_t\right]\right] \quad // \quad \text{The law of total expectation} \\ &= \mathbb{E}\left[\nabla h(X_t)^\top \mathcal{E}\left[\dot{X}_t | X_t\right]\right] \quad // \quad \mathbb{E}[Y] &= \mathbb{E}\left[\mathbb{E}[Y | X]\right]. \end{split}$$

$$&= \mathbb{E}\left[\nabla h(X_t)^\top v_t(X_t)\right]$$

$$&= \int \nabla h(x)^\top v_t(x) \rho_t(x) \mathrm{d}x$$

$$&= -\int h(x) \nabla \cdot (v_t(x) \rho_t(x)) \mathrm{d}x \quad // \quad \text{Integration by parts:} \\ &= -\int h \nabla \cdot f \mathrm{d}x. \end{split}$$

Taking $h = \delta_x$ yields

$$\partial_t \rho_t(x) = -\nabla \cdot (v_t(x)\rho_t(x)).$$

Marginal is a Markovian Property

Marginals are determined by the Markov transition probability:

$$P(X_t \mid X_s) \quad t \geq s.$$

• Marginals are determined recursively by:

$$P(X_t) = \int P(X_t \mid X_s) P(X_s) \, \mathrm{d}X_s$$

$$X_t = \int P(X_t \mid X_s) P(X_s) \, \mathrm{d}X_s$$

- Taking the limit $s \to t$ yields density evolution equations.
- It does not require the full transition probability:

$$P(X_s \mid X_{\leq t}), \quad s > t,$$

even if the process itself is non-Markov.

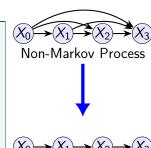
Markovian Projection

Given a joint distribution

$$P^*(X_0,\ldots,X_T) = \prod_t P^*(X_t \mid X_{< t}),$$

its Markovian projection, or Markovization is the solution of

 $\min_{P} \mathrm{KL}(P^* \mid\mid P)$ s.t. $P \in \mathtt{Markov}$ Chain.



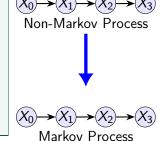
Markovian Projection

Given a joint distribution

$$P^*(X_0,\ldots,X_T) = \prod_t P^*(X_t \mid X_{< t}),$$

its Markovian projection, or Markovization is the solution of

$$\min_{P} \mathrm{KL}(P^* \mid\mid P)$$
 s.t. $P \in \mathtt{Markov}$ Chain.



Solution yields

$$P^{ exttt{Markov}}(X_0,\ldots,X_T) = \prod_t P^*(X_t \mid X_{t-1}).$$

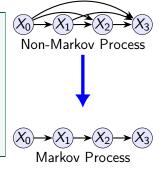
Markovian Projection

Given a joint distribution

$$P^*(X_0,\ldots,X_T) = \prod_t P^*(X_t \mid X_{< t}),$$

its Markovian projection, or Markovization is the solution of

$$\min_{P} \mathrm{KL}(P^* \mid\mid P)$$
 s.t. $P \in \mathrm{Markov}$ Chain.



Solution yields

$$P^{ exttt{Markov}}(X_0,\ldots,X_T) = \prod_t P^*(X_t \mid X_{t-1}).$$

The Markovization preserves the marginals:

$$P^{\text{Markov}}(X_t) = P^*(X_t), \quad \forall t.$$

Markovization

The Markovian projection:

$$\min_{P} \mathrm{KL}(P^* \mid\mid P)$$
 s.t. $P \in \mathtt{Markov}$ Chain.

Solution yields

$$P^{ exttt{Markov}}(X_0,\ldots,X_T) = \prod_t P^*(X_t \mid X_{t-1}).$$

Proof.

As Markov chain, we have $P(X_0,\ldots,X_T)=\prod_t P(X_t\mid X_{t-1})$. Hence,

$$\mathrm{KL}(P^* \mid\mid P) = \sum_t \mathrm{KL}(P^*(X_t \mid X_{t-1}) \mid\mid P(X_t \mid X_{t-1}))]$$

Minimization yields:
$$P(X_t \mid X_{t-1}) = P^*(X_t \mid X_{t-1})$$
.

Rectification as Markovization

Rectified flow $\{Z_t\}$ = Rectify($\{X_t\}$) can be viewed as the best Markov approximation of $\{X_t\}$.

Wentzell-Freidlin Principle: Consider the stochastic perturbation

$$\mathrm{d} Z_t^\epsilon = v_t(Z_t^\epsilon)\,\mathrm{d} t + \sqrt{\epsilon}\,\mathrm{d} W_t,$$

the probability of a smooth path $\{x_t\}$ satisfies:

$$\epsilon \log \mathbb{P}(\{Z_t^{\varepsilon}\} \approx \{x_t\}) \asymp -\int_0^1 \|\dot{x}_t - v_t(x_t)\|^2 dt.$$

Hence, the RF loss is asymptotically the KL divergence:

$$\epsilon \mathrm{KL}(\mathbb{P}^X \parallel \mathbb{P}^Z) pprox rac{1}{2} \mathbb{E} \left[\int_0^1 \| \dot{X}_t - v_t(X_t) \|^2 \, \mathrm{d}t
ight] + const.$$

48