# Flow Through Generative Modeling: A Tutorial

Qiang Liu

UT Austin

July 14 2025

With help from: Runlong Liao, Xixi Hu, Bo Liu, Baiyu Su, Yuanzhi Zhu, Lizhang Chen

#### Generative Models: Noise to Data

**Input:** Data  $\mathcal{D} = \{X_i\}_{i=1}^n$  from an unknown distribution  $P^*$ .

Goal: Learn a generative model that can sample from  $P^*$  via

$$X = T^{\theta}(Z), \quad Z \sim P_{\mathtt{noise}}.$$



# One-Step vs. Process Models

$$exttt{Data} = \mathcal{T}^{ heta}( exttt{Noise}).$$

#### **One-Step Models**

- Learn  $T^{\theta}$  as a black box.
  - GANs
  - Autoencoders
  - Invertible models

#### **Iterative Process Models**

- Learn  $T^{\theta}$  as an iterative process.
  - Diffusion models: SDE
  - Flow models: ODE
  - GPT: Auto-regressive





Learn an algorithm

# All Successful Models Today Are Process Models

#### Divide and Conquer

Break complex generation into simpler steps.

- Improves expressivity
- Simplifies training











# Process Models: Decomposition + Imitation

 Process Decomposition: Break complex data generation into simpler steps along a latent trajectory:

Data
$$\rightarrow$$
Latent  $Q^*(X^{\text{data}}) Q^{\text{aug}}(X^{\text{latent}} \mid X^{\text{data}})$ 

 Process Imitation: Learn a generative model that mimics the stepwise process:

Latent
$$\rightarrow$$
Data  $P^{\theta}(X_0,\ldots,X_T) = \prod_i P(X_i \mid X_{< i})$ 

such that the marginal distributions are matched:

$$P^{\theta}(X^{\text{data}}) = Q^*(X^{\text{data}}).$$

5

#### How is this different from classical latent variable models and VAE?

Classical (full EM):  $Q^{\text{aug}}$  and  $P^{\theta}$  are updated iteratively to fit each other.



New (lazy EM):  $Q^{\text{aug}}$  is fixed (pre-defined); only  $P^{\theta}$  is updated to fit  $Q^{\text{aug}}$ .

$$Q^{\text{aug}} \longrightarrow P^{\theta}$$

- Why is this okay and preferred?
  - Large neural nets  $P^{\theta}$  are universal approximators; can fit any given  $Q^{\text{aug}}$ .
  - MLE solutions are not unique anyway.
  - Computationally easier to use fixed Q<sup>aug</sup>.
  - Can inject priors to encourage simplicity and efficiency.

#### How is this different from classical latent variable models and VAE?

• Classical (exact matching): Try to fit  $P^{\theta}$  exactly with  $Q^{\text{aug}}$  on joint distribution:

$$Q^{\text{aug}}(X^{\text{latent}}, X^{\text{data}}) = P^{\theta}(X^{\text{latent}}, X^{\text{data}}).$$

• New (marginal matching):  $P^{\theta}$  only match  $Q^{\text{aug}}$  on marginals acoss steps:

$$P^{\theta}(X_t) = Q^{\operatorname{aug}}(X_t), \quad \forall t.$$

• In fact, we will see that  $P^{\theta}$  "simplifies and improves"  $Q^{\text{aug}}$  while preserving marginals.





#### **Challenges**

- Slow inference
- Conceptual understanding
- Optimal algorithm design

**Key question:** Can we combine the best of both worlds?

| Model    | Training | Inference | Performance |
|----------|----------|-----------|-------------|
| One-Step | Hard     | Fast      | Limited     |
| Process  | Easy     | Slow      | Strong      |

# Chaos and Beauty: Intriguing math + Powerful Applications

Denoising diffusion probabilistic models (DDPM), Denoising diffusion implicit models (DDIM), Annealed Langevin dynamics, Nonequilibrium Thermodynamics, Score-based Generative Models, Energy Models, Score matching, Time-reversed diffusion processes, Probability flow ODEs, Schrödinger Bridge, Brownian bridges, Diffusion Bridges, Doob's h-transform, Föllmer Process, EDM, Rectified Flow, Stochastic Interpolantss Flow Matching, Reflow, Bridge Matching, Markovization, Gyöngy projection, Hierarchical VAE, Optimal Transport, Straight Transport, Consistent Models, Score Distillation, Discrete Flow, Optimal Control



# Diffusion Models in ML Are Like Quantum Mechanics in Physics



Flow / Diffusion

Particle-wave / Nelson / Bohmian Mechanics

#### This Tutorial: Starts From Rectified Flow

Generation = Rectify(Interpolation) 
$$P^{\theta} = \text{Rectify}(Q^{\text{aug}}).$$

Theme: Understanding and using Rectify() operator.

#### Topics:

- The Rewiring demon: Rectified Flow
- Bless of Continuity: Marginal Preservation
- Bless of Straightness: Transport Cost
- Bless of Gaussian: Score and KI.
- Bless of Noise: Diffusion
- Bless of Consistency: Distillation
- Bless of Reward: Tilting
- Bless of Singularity: Constrained and Discrete

# More Information in blog and notes [Liu24]

#### Email: qiang.liu.research@gmail.com



#### To be updated...

Funding supports from NSF, ONR, IFML, Google, Meta.

# Frontiers in Probabilistic Inference: Learning Meets Sampling (FPI 2025)

- FPI Neurips 2025 Workshop
- Call for Papers + Open Questions
- https://fpineurips.framer.website/

# Frontiers in Probabilistic Inference: Sampling Meets Learning

December 6/7 @ NeurIPS 2025, San Diego

#### **Problem: Flow Transport**

- **Given:** Data from source  $P_0$  and target  $P_1$ .
- Goal: Learn an ODE velocity field v(z, t):

$$\frac{d}{dt}Z_t = v(Z_t, t), \quad Z_0 \sim P_0, \quad t \in [0, 1].$$

Transport  $Z_0 \sim P_0$  (noise) to  $Z_1 \sim P_1$  (data).



$$\begin{array}{ccc} t = 0 & \longrightarrow & t = 1 \\ \text{(noise)} & & \text{(data)} \end{array}$$

#### Assume $Z_0 \sim P_0$ , $Z_1 \sim P_1$ :

- The Transport Process is the stochastic process  $\{Z_t : t \in [0,1]\}$  connecting  $Z_0$  and  $Z_1$ .
- The Transport Plan (Coupling) is the joint distribution of the start-end pair  $(Z_0, Z_1)$ .
- The Transport Map is a mapping  $Z_1 = T(Z_0)$  that pushes  $P_0$  to  $P_1$ .



# Transport Maps are not Unique

- There can be infinite many possible maps between  $P_0$  and  $P_1$ .
  - The flow can go different trajectories.
  - The flow can yield different couplings.



Optimal transport



Different trajectories



Different couplings

# Optimal Transport Problem

• Optimal transport: special transports minimizing transport costs induced by a convex function  $c(\cdot)$ .

#### c-Optimal Transport (Static)

$$\min_{(Z_0,Z_1)} \mathbb{E}\left[c(Z_1-Z_0)\right]$$
s.t.  $Z_0 \sim P_0$ ,  $Z_1 \sim P_1$ 

# c-Optimal Transport (Dynamic)

$$\min_{\{Z_t\}} \mathbb{E} \left[ \int_0^1 c(\dot{Z}_t) dt \right]$$
s.t.  $Z_0 \sim P_0$ ,  $Z_1 \sim P_1$ 



### Optimal Transport Problem

• Optimal transport: special transports minimizing transport costs induced by a convex function  $c(\cdot)$ .

#### c-Optimal Transport (Static)

$$\min_{(Z_0,Z_1)} \mathbb{E}[c(Z_1 - Z_0)]$$
  
s.t.  $Z_0 \sim P_0, Z_1 \sim P_1$ 

# c-Optimal Transport (Dynamic)

$$\min_{\{Z_t\}} \mathbb{E} \left[ \int_0^1 c(\dot{Z}_t) dt \right]$$
s.t.  $Z_0 \sim P_0$ ,  $Z_1 \sim P_1$ 

- However, solving OT is
  - computationally challenging.
  - unnecessary for the purpose of generative modeling.



# Approximation Error

 In practice, the ODE is solved with numerical methods, such as Euler method:

$$\hat{Z}_{t+\epsilon} = \hat{Z}_t + \epsilon v^{\theta}(\hat{Z}_t, t), \qquad \text{ for } t \in \{0, \epsilon, 2\epsilon, ...., 1\},$$

where  $\epsilon = 1/N$  is step size.



# Straightness = Fast

Euler discretization error depends on the trajectory curvature:

$$\|\hat{Z}_t - Z_t\| = O(\epsilon M), \qquad M = \sup_t \|\ddot{Z}_t\|.$$

Perfectly straight trajectories = one-step generation



# Straightness = Fast

Euler discretization error depends on the trajectory curvature:

$$\|\hat{Z}_t - Z_t\| = O(\epsilon M), \qquad M = \sup_t \|\ddot{Z}_t\|.$$

Perfectly straight trajectories = one-step generation



Idea Goal: find Straight ODE transports from  $P_0$  to  $P_1$  that follow straight trajectories.

 $\{\mathtt{ODE}\} \cap \{\mathtt{Straight\ Trajectories}\}$ 



#### Rectified Flow in a Nutshell

- Coupling: Sample from a noise-data pair  $(X_0, X_1)$ .
- Interpolation: Construct interpolation:

$$X_t = tX_1 + (1-t)X_0.$$



#### Rectified Flow in a Nutshell

- Coupling: Sample from a noise-data pair  $(X_0, X_1)$ .
- Interpolation: Construct interpolation:

$$X_t = tX_1 + (1-t)X_0.$$



Causalization: Convert interpolation to a causal process:

$$\dot{Z}_t = v_t(Z_t)$$

by minimizing:

$$\min_{v} \int_{0}^{1} \mathbb{E}_{(X_{0},X_{1})} \left[ \|\dot{X}_{t} - v_{t}(X_{t})\|^{2} \right] dt,$$

where  $\dot{X}_t = X_1 - X_0$  are the line directions.



#### Rectified Flow in a Nutshell

- Coupling: Sample from a noise-data pair  $(X_0, X_1)$ .
- Interpolation: Construct interpolation:

$$X_t = tX_1 + (1-t)X_0.$$

 Causalization: Convert interpolation to a causal process:

$$\dot{Z}_t = v_t(Z_t)$$

by minimizing:

$$\min_{V} \int_{0}^{1} \mathbb{E}_{(X_{0},X_{1})} \left[ \|\dot{X}_{t} - v_{t}(X_{t})\|^{2} \right] dt,$$

where  $\dot{X}_t = X_1 - X_0$  are the line directions.

• Reflow: Simulate ODE  $\dot{Z}_t = v_t(Z_t)$  to obtain new couplings  $(Z_0, Z_1)$ . Repeat.

#### Rectified Flow

ullet Interpolation o Generation o Faster Generation

# Rewiring Trajectories

- Interpolation paths can intersect and cross
- But trajectories of ODEs can never cross each other.
- Rectified Flow rewires the crossings of interpolation.



# ODEs Trajectories Can Not Cross Each Other

$$\dot{X}_t = v_t(X_t).$$

• The update direction  $\dot{X}_t$  is uniquely determined by  $X_t$ .

Let  $\{X_t\}$  and  $\{\tilde{X}_t\}$  be solutions of the same ODE. Then

$$X_0 = \tilde{X}_0 \implies X_t = \tilde{X}_t$$
 for all  $t$  in the existence interval.



# Rectified Flow: Single Data Case

• Consider the case of a single point  $x^{data}$ :



# Rectified Flow: Single Data Case

• Interpolation:

$$X_t = tx^{\text{data}} + (1-t)X_0.$$

This interpolation also defines an ODE:

$$\frac{\mathrm{d}}{\mathrm{d}t}X_t = x^{\mathtt{data}} - X_0 = \frac{x^{\mathtt{data}} - X_t}{1 - t}.$$

where  $X_0$  is eliminated using the interpolation formula.

where 
$$X_0$$
 is eliminated using the interpolation formula.



$$v^*(x,t) = \frac{x^{\text{data}} - x}{1 - t}$$
 is the RF velocity field.

# Single Point Rectified Flow

$$\frac{\mathrm{d}}{\mathrm{d}t}X_t = \frac{x^{\mathtt{data}} - X_t}{1 - t}, \quad t \in [0, 1]$$

- Apparent singularity from the 1/(1-t) factor.
- Yet the solution is perfectly regular and stable:
  - Straight trajectories
  - Finite uniform speed
  - Always arrives at  $X_t = x^{\mathtt{data}}$  when t = 1



 Also perfectly numerically stable: Euler's method yields exact solution in one step.

# Single Point Rectified Flow

$$\frac{\mathrm{d}}{\mathrm{d}t}X_t = \frac{x^{\mathtt{data}} - X_t}{1 - t}, \quad t \in [0, 1]$$

- Intuitively, 1/(1-t) is a "deadline pressure".
- Carefully calculated to land  $x^{\text{data}}$  precisely at t = 1.



#### Time-Scaled Gradient Flow

Reparameterize time:

$$au = -\log(1-t) \qquad \iff \qquad t = 1 - e^{- au}.$$

- Define new variable:  $Y_{ au}:=X_{t( au)}$
- Then, the dynamics become:

$$\dot{Y}_{\tau} = x^{\text{data}} - Y_{\tau}$$

• This is the standard gradient flow of the quadratic potential:

$$f(y) = \frac{1}{2} \left\| x^{\text{data}} - y \right\|^2$$



#### Normalized Gradient Flow

The straight-line ODE  $\dot{X}_t = rac{x^* - X_t}{1 - t}$  is also equivalent to

$$\dot{X}_t = -\eta \frac{\nabla f(x)}{\|\nabla f(x)\|},$$

with

$$f(x) = \frac{1}{2} \|x - x^*\|^2, \quad \eta = \|x_0\|.$$



In general, normalized gradient flow on strongly convex functions [RB20]:

- Normalize the update norm across updates.
- Squeeze gradient flow into finite time.

#### Rectified Flow: More Data Points



#### Interpolation Paths

The interpolated paths have crossings, hence "non-causal"

#### Rectified Flow

- Learns a causal ODE that best approximates the interpolation path.
- Unentangles the path into a forward generative process.
- It de-randomizes, causalizes, and Markovizes the interpolation.

# From Interpolation to Generation

• Projecting the Interpolation Process to the ODE :

$$\min_{v} \mathbb{E}_{(X_0,X_1,t)} [\|\dot{X}_t - v_t(X_t)\|^2].$$

• The Explicit solution is

$$v^*(x,t) = \mathbb{E}\left[\dot{X}_t \mid X_t = x\right].$$

 The "mean field" velocity: Take the average direction whenever intersection happens.





# How Does Rewiring Actually Happen by Velocity Averaging?

How Does Averaging Velocity Lead to Trajectory Rewiring?



#### Bias-variance Decomposition:

$$L(v) = \mathbb{E}\left[\|\dot{X}_t - v_t(X_t)\|^2\right]$$

$$= \mathbb{E}\left[\|\dot{X}_t - \mathbb{E}[\dot{X}_t \mid X_t]\|^2\right] + \mathbb{E}\left[\|v_t(X_t) - \mathbb{E}[\dot{X}_t \mid X_t]\|^2\right]$$
Conditional variance
$$= \mathbb{E}[\operatorname{Var}(\dot{X}_t \mid X_t)]$$
Estimation bias

Hence, the optimal solution should achieve zero bias:

$$v_t^*(X_t) = \mathbb{E}\left[\dot{X}_t \mid X_t\right].$$

#### Bias-variance Decomposition:

$$L(v) = \mathbb{E}\left[\|\dot{X}_t - v_t(X_t)\|^2\right]$$

$$= \underbrace{\mathbb{E}\left[\|\dot{X}_t - \mathbb{E}[\dot{X}_t \mid X_t]\|^2\right]}_{\text{Conditional variance}} + \underbrace{\mathbb{E}\left[\|v_t(X_t) - \mathbb{E}[\dot{X}_t \mid X_t]\|^2\right]}_{\text{Estimation bias}}$$

$$= \mathbb{E}[\operatorname{Var}(\dot{X}_t | X_t)]$$

Hence, the optimal solution should achieve zero bias:

$$v_t^*(X_t) = \mathbb{E}\left[\dot{X}_t \mid X_t\right].$$

The minimum loss value is

$$L(v^*) = \mathbb{E}\left[\operatorname{Var}(\dot{X}_t \mid X_t)\right].$$

It reflects:

- The degree of intersection of interpolation process  $\{X_t\}$ .
- The trajectory straightness of the rectified flow  $\{Z_t\}$ .

# Loss as Straightness

The lower the loss, the **straighter** the ODE path from noise to data.



# Singular Velocity on Finite Data Points

On a finite number of data points  $\{x^{(i)}\}_{i=1}^n$ :

$$v^*(x,t) = \sum_{i=1}^n \omega_t^{(i)}(x) \left(\frac{x^{(i)}-x}{1-t}\right),$$

with posterior weights 
$$\omega_t^{(i)}(x) = \frac{\rho_0\left(\hat{x}_0^{(i)} \mid x^{(i)}\right)}{\sum_j \rho_0\left(\hat{x}_0^{(j)} \mid x^{(j)}\right)}, \, \hat{x}_0^{(i)} = \frac{x - tx^{(i)}}{1 - t}.$$



- Singular velocity due to 1/(1-t).
- Dynamics exactly achieves the training data.
- Minimum training loss, but large evaluation loss.
- Neural network must provide smoothing as it can not fit the 1/(1-t) singularity.



# Analytic Velocity on Smooth Densities

With smooth densities, we get

$$\mathsf{v}_t^*(\mathsf{x}) = \mathbb{E}_{\mathsf{X}_1 \sim \pi_1} \left[ \omega_t(\mathsf{X}_1 \mid \mathsf{x}) \frac{\mathsf{X}_1 - \mathsf{x}}{1 - t} \right],$$

where  $\omega_t(x_1 \mid x)$  is the posterior probability:

$$\omega_{t}(x_{1} \mid x) := \mathbb{P}(X_{1} = x_{1} \mid X_{t} = x) = \frac{\rho_{0}(\hat{x}_{0} \mid x_{1})}{\mathbb{E}_{X_{1}}\left[\rho_{0}(\hat{X}_{0} \mid X_{1})\right]}, \quad \hat{x}_{0} := \frac{x - tx_{1}}{1 - t}$$

where  $\rho_0(x_0 \mid x_1)$  is the density of  $X_0$  given  $X_1$ .

- Infinite mixture of the one-point velocity  $\frac{x^{\text{data}} x}{1 t}$ .
- Singularity may be smoothed out.

# Bless of Neural Fitting Error

- The singular analytic velocity on training data fails to generalize.
- But the neural net training refuses the singular solution.
- Avoiding singularity ensures data outside of training set can be sampled, leading to generalization.



Analytic model yields very small training loss yet exploding testing loss.

36

#### Open Question:

- Why does neural network generalizes in a way that matches human perception?
- Related: mechanistic explanation of diffusion generalization [NZMW24, SZT17, NBMS17].