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Generative Models: Noise to Data

Input: Data D = {Xi}ni=1 from an unknown distribution P∗.

Goal: Learn a generative model that can sample from P∗ via

X = T θ(Z ), Z ∼ Pnoise.
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One-Step vs. Process Models

Data = T θ(Noise).

One-Step Models
• Learn T θ as a black box.

• GANs
• Autoencoders
• Invertible models

Iterative Process Models
• Learn T θ as an iterative process.

• Diffusion models: SDE
• Flow models: ODE
• GPT: Auto-regressive

Learn a function
Learn an algorithm
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All Successful Models Today Are Process Models

Divide and Conquer
Break complex generation into simpler steps.
• Improves expressivity
• Simplifies training

ODE (Flow) SDE (Diffusion)

GPT (Autoregressive) Jump
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Process Models: Decomposition + Imitation

• Process Decomposition: Break complex data generation into simpler
steps along a latent trajectory:

Data→Latent Q∗(X data)Qaug(X latent | X data)

• Process Imitation: Learn a generative model that mimics the stepwise
process:

Latent→Data Pθ(X0, . . . ,XT ) =
∏
i

P(Xi | X<i )

such that the marginal distributions are matched:

Pθ(X data) = Q∗(X data).
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How is this different from classical latent variable models and VAE?

Classical (full EM): Qaug and Pθ are updated iteratively to fit each other.

Qaug
Pθ

M step

E step

New (lazy EM): Qaug is fixed (pre-defined); only Pθ is updated to fit Qaug.

Qaug
Pθ

• Why is this okay and preferred?
• Large neural nets Pθ are universal approximators; can fit any given Qaug.
• MLE solutions are not unique anyway.
• Computationally easier to use fixed Qaug.
• Can inject priors to encourage simplicity and efficiency.
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How is this different from classical latent variable models and VAE?

• Classical (exact matching): Try to fit Pθ exactly with Qaug on joint
distribution:

Qaug(X latent,X data) = Pθ(X latent,X data).

• New (marginal matching): Pθ only match Qaug on marginals acoss
steps:

Pθ(Xt) = Qaug(Xt), ∀t.

• In fact, we will see that Pθ “simplifies and improves” Qaug while
preserving marginals.

Qaug
Pθ

Rectifies
Markovizes

Causalizes
Derandomizes
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Challenges
• Slow inference
• Conceptual understanding
• Optimal algorithm design

Key question: Can we combine the best of both worlds?

Model Training Inference Performance

One-Step Hard Fast Limited

Process Easy Slow Strong
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Chaos and Beauty: Intriguing math + Powerful Applications
Denoising diffusion probabilistic models (DDPM), Denoising diffusion
implicit models (DDIM), Annealed Langevin dynamics, Nonequilibrium

Thermodynamics, Score-based Generative Models, Energy Models, Score
matching, Time-reversed diffusion processes, Probability flow ODEs,

Schrödinger Bridge, Brownian bridges, Diffusion Bridges, Doob’s
h-transform, Föllmer Process, EDM, Rectified Flow, Stochastic Interpolantss
Flow Matching, Reflow, Bridge Matching, Markovization, Gyöngy projection,

Hierarchical VAE, Optimal Transport, Straight Transport, Consistent
Models, Score Distillation, Distribution Matching Distillation, Discrete

Diffusion, Discrete Flow, Optimal Control
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This Tutorial: Starts From Rectified Flow

Generation = Rectify(Interpolation)

Pθ = Rectify(Qaug).

Theme: Understanding and using Rectify() operator.

• Topics:
• The Rewiring demon: Rectified Flow
• Bless of Continuity: Marginal Preservation
• Bless of Straightness: Transport Cost
• Bless of Gaussian: Score and KL
• Bless of Noise: Diffusion
• Bless of Consistency: Distillation
• Bless of Reward: Tilting
• Bless of Singularity: Constrained and Discrete
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More Information in blog and notes [Liu24]
Email: qiang.liu.research@gmail.com

To be updated...

Funding supports from NSF, ONR, IFML, Google, Meta.
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Frontiers in Probabilistic Inference: Learning Meets
Sampling (FPI 2025)

• FPI Neurips 2025 Workshop
• Call for Papers + Open Questions
• https://fpineurips.framer.website/
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Problem: Flow Transport
• Given: Data from source P0 and target P1.
• Goal: Learn an ODE velocity field v(z , t):

d

dt
Zt = v(Zt , t), Z0 ∼ P0, t ∈ [0, 1].

Transport Z0 ∼ P0 (noise) to Z1 ∼ P1 (data). t = 0
(noise)

−→ t = 1
(data)

Assume Z0 ∼ P0, Z1 ∼ P1:
• The Transport Process is the stochastic

process {Zt : t ∈ [0, 1]} connecting Z0 and Z1.

• The Transport Plan (Coupling) is the joint
distribution of the start-end pair (Z0,Z1).

• The Transport Map is a mapping Z1 = T (Z0)
that pushes P0 to P1.
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Transport Maps are not Unique
• There can be infinite many possible maps between P0 and P1.

• The flow can go different trajectories.
• The flow can yield different couplings.

Optimal transport Different trajectories Different couplings
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Optimal Transport Problem
• Optimal transport: special transports minimizing transport costs

induced by a convex function c(·).

c-Optimal Transport (Static)

min
(Z0,Z1)

E [c(Z1 − Z0)]

s.t. Z0∼P0, Z1∼P1

c-Optimal Transport (Dynamic)

min
{Zt}

E
[∫ 1

0
c(Żt) dt

]
s.t. Z0∼P0, Z1∼P1

• However, solving OT is
• computationally challenging.
• unnecessary for the purpose of generative modeling.
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Approximation Error

• In practice, the ODE is solved with numerical methods, such as Euler
method:

Ẑt+ϵ = Ẑt + ϵvθ(Ẑt , t), for t ∈ {0, ϵ, 2ϵ, ...., 1},

where ϵ = 1/N is step size.
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Straightness = Fast

• Euler discretization error depends on the trajectory curvature:∥∥∥Ẑt − Zt

∥∥∥ = O(ϵM), M = sup
t

∥∥∥Z̈t

∥∥∥ .
• Perfectly straight trajectories = one-step generation

Idea Goal: find Straight ODE transports from
P0 to P1 that follow straight trajectories.

{ODE} ∩ {Straight Trajectories}
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Rectified Flow in a Nutshell

• Coupling: Sample from a noise-data pair (X0,X1).

• Interpolation: Construct interpolation:

Xt = tX1 + (1 − t)X0.
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Rectified Flow in a Nutshell

• Coupling: Sample from a noise-data pair (X0,X1).

• Interpolation: Construct interpolation:

Xt = tX1 + (1 − t)X0.

• Causalization: Convert interpolation to a causal
process:

Żt = vt(Zt)

by minimizing:

min
v

∫ 1

0
E(X0,X1)

[
∥Ẋt − vt(Xt)∥2

]
dt,

where Ẋt = X1 − X0 are the line directions.
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• Coupling: Sample from a noise-data pair (X0,X1).

• Interpolation: Construct interpolation:

Xt = tX1 + (1 − t)X0.

• Causalization: Convert interpolation to a causal
process:
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]
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• Reflow: Simulate ODE Żt = vt(Zt) to obtain new
couplings (Z0,Z1). Repeat.
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Rectified Flow

• Interpolation → Generation → Faster Generation
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Rewiring Trajectories
• Interpolation paths can intersect and cross
• But trajectories of ODEs can never cross each other.
• Rectified Flow rewires the crossings of interpolation.
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ODEs Trajectories Can Not Cross Each Other

Ẋt = vt(Xt).

• The update direction Ẋt is uniquely determined by Xt .

Let {Xt} and {X̃t} be solutions of the same ODE. Then

X0 = X̃0 =⇒ Xt = X̃t for all t in the existence interval.

t

Xt , X̃t

Possible for ODE

t

Impossible for ODE

Xt , X̃t

t

Rewired at crossing

Xt , X̃t
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Rectified Flow: Single Data Case
• Consider the case of a single point xdata:
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Rectified Flow: Single Data Case

• Interpolation:

Xt = txdata + (1 − t)X0.

• This interpolation also defines an ODE:

d
dt

Xt = xdata − X0 =
xdata − Xt

1 − t
.

where X0 is eliminated using the
interpolation formula.

v∗(x , t) =
xdata − x

1 − t
is the RF velocity field.
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Single Point Rectified Flow

d
dt

Xt =
xdata − Xt

1 − t
, t ∈ [0, 1]

• Apparent singularity from the 1/(1 − t) factor.

• Yet the solution is perfectly regular and stable:
• Straight trajectories
• Finite uniform speed
• Always arrives at Xt = xdata when t = 1

• Also perfectly numerically stable: Euler’s method yields exact solution
in one step.

25



Single Point Rectified Flow

d
dt

Xt =
xdata − Xt

1 − t
, t ∈ [0, 1]

• Intuitively, 1/(1 − t) is a “deadline pressure”.

• Carefully calculated to land xdata precisely at t = 1.
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Time-Scaled Gradient Flow

• Reparameterize time:

τ = − log(1 − t) ⇐⇒ t = 1 − e−τ .

• Define new variable: Yτ := Xt(τ)

• Then, the dynamics become:
Ẏτ = xdata − Yτ

• This is the standard gradient flow of the quadratic potential:

f (y) = 1
2

∥∥xdata − y
∥∥2
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Normalized Gradient Flow

The straight-line ODE Ẋt =
x∗−Xt
1−t is

also equivalent to

Ẋt = −η
∇f (x)

∥∇f (x)∥
,

with

f (x) =
1
2
∥x − x∗∥2 , η = ∥x0∥ .

0 1 2 3 4 5
t
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||x
x

* |
|

Gradient Descent on f(x) = ||x x * ||2/2
Gradient Descent
Normalized Gradient Descent

In general, normalized gradient flow on strongly convex functions [RB20]:

• Normalize the update norm across updates.

• Squeeze gradient flow into finite time.
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Rectified Flow: More Data Points

Interpolation Paths
• The interpolated paths have crossings, hence “non-causal”

Rectified Flow
• Learns a causal ODE that best approximates the interpolation path.

• Unentangles the path into a forward generative process.

• It de-randomizes, causalizes, and Markovizes the interpolation.
29



From Interpolation to Generation

• Projecting the Interpolation Process to the ODE :
min
v

E(X0,X1,t)

[
∥Ẋt − vt(Xt)∥2].

• The Explicit solution is

v∗(x , t) = E
[
Ẋt | Xt = x

]
.

• The “mean field” velocity: Take the average direction whenever
intersection happens.
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How Does Rewiring Actually Happen by Velocity Averaging?

• How Does Averaging Velocity Lead to Trajectory Rewiring?
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Bias-variance Decomposition:

L(v) = E
[
∥Ẋt − vt(Xt)∥2

]
= E

[
∥Ẋt − E[Ẋt | Xt ]∥2

]
︸ ︷︷ ︸

Conditional variance
=E[Var(Ẋt |Xt)]

+ E
[
∥vt(Xt)− E[Ẋt | Xt ]∥2

]
︸ ︷︷ ︸

Estimation bias

• Hence, the optimal solution should achieve zero bias:

v∗t (Xt) = E
[
Ẋt | Xt

]
.

• The minimum loss value is

L(v∗) = E
[
Var(Ẋt | Xt)

]
.

It reflects:
• The degree of intersection of interpolation process {Xt}.
• The trajectory straightness of the rectified flow {Zt}.
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Loss as Straightness

The lower the loss, the straighter the ODE path from noise to data.
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Singular Velocity on Finite Data Points

On a finite number of data points {x (i)}ni=1:

v∗(x , t) =
n∑

i=1

ω
(i)
t (x)

(
x (i) − x

1 − t

)
,

with posterior weights ω
(i)
t (x) =

ρ0

(
x̂
(i)
0 | x(i)

)
∑

j ρ0

(
x̂
(j)
0 | x(j)

) , x̂ (i)0 = x−tx(i)

1−t .

Finite Mixture of x(i)−x
1−t

• Singular velocity due to 1/(1 − t).

• Dynamics exactly achieves the training data.

• Minimum training loss, but large evaluation loss.

• Neural network must provide smoothing as it can not fit the
1/(1 − t) singularity.
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Analytic Velocity on Smooth Densities
With smooth densities, we get

v∗t (x) = EX1∼π1

[
ωt(X1 | x)X1 − x

1 − t

]
,

where ωt(x1 | x) is the posterior probability:

ωt(x1 | x) := P(X1 = x1 | Xt = x) =
ρ0 (x̂0 | x1)

EX1

[
ρ0

(
X̂0 | X1

)] , x̂0 :=
x − tx1

1 − t

where ρ0(x0 | x1) is the density of X0 given X1.

• Infinite mixture of the one-point velocity
xdata − x

1 − t
.

• Singularity may be smoothed out.
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Bless of Neural Fitting Error
• The singular analytic velocity on training data fails to generalize.
• But the neural net training refuses the singular solution.
• Avoiding singularity ensures data outside of training set can be

sampled, leading to generalization.

Analytic model yields very small training loss yet exploding testing loss.
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Open Question:
• Why does neural network generalizes in a way that matches human

perception?

• Related: mechanistic explanation of diffusion
generalization [NZMW24, SZT17, NBMS17].
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