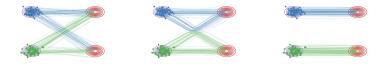
### Rewiring Trajectories

- Interpolation paths can intersect and cross
- But trajectories of ODEs can never cross each other.
- Rectified Flow rewires the crossings of interpolation.





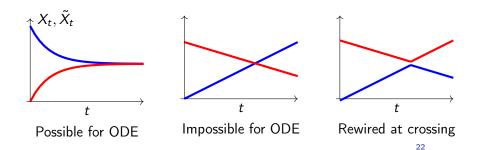
## ODEs Trajectories Can Not Cross Each Other

$$\dot{X}_t = v_t(X_t).$$

• The update direction  $\dot{X}_t$  is uniquely determined by  $X_t$ .

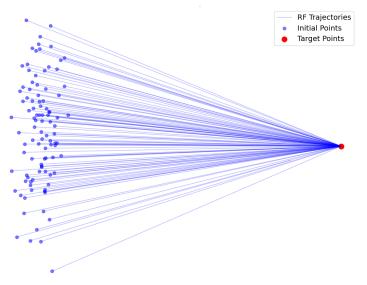
Let  $\{X_t\}$  and  $\{\tilde{X}_t\}$  be solutions of the same ODE. Then

$$X_0 = \tilde{X}_0 \implies X_t = \tilde{X}_t$$
 for all  $t$  in the existence interval.



## Rectified Flow: Single Data Case

• Consider the case of a single point  $x^{data}$ :



## Rectified Flow: Single Data Case

• Interpolation:

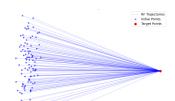
$$X_t = tx^{\text{data}} + (1-t)X_0.$$

This interpolation also defines an ODE:

$$\frac{\mathrm{d}}{\mathrm{d}t}X_t = x^{\mathtt{data}} - X_0 = \frac{x^{\mathtt{data}} - X_t}{1 - t}.$$

where  $X_0$  is eliminated using the interpolation formula.

where 
$$X_0$$
 is eliminated using the interpolation formula



$$v^*(x,t) = \frac{x^{\text{data}} - x}{1 - t}$$
 is the RF velocity field.

## Single Point Rectified Flow

$$\frac{\mathrm{d}}{\mathrm{d}t}X_t = \frac{x^{\mathtt{data}} - X_t}{1 - t}, \quad t \in [0, 1]$$

- Apparent singularity from the 1/(1-t) factor.
- Yet the solution is perfectly regular and stable:
  - Straight trajectories
  - Finite uniform speed
  - Always arrives at  $X_t = x^{\mathtt{data}}$  when t = 1

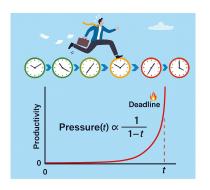


 Also perfectly numerically stable: Euler's method yields exact solution in one step.

## Single Point Rectified Flow

$$\frac{\mathrm{d}}{\mathrm{d}t}X_t = \frac{x^{\mathtt{data}} - X_t}{1 - t}, \quad t \in [0, 1]$$

- Intuitively, 1/(1-t) is a "deadline pressure".
- Carefully calculated to land  $x^{\text{data}}$  precisely at t = 1.



### Time-Scaled Gradient Flow

Reparameterize time:

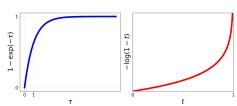
$$au = -\log(1-t) \qquad \iff \qquad t = 1 - e^{- au}.$$

- Define new variable:  $Y_{ au}:=X_{t( au)}$
- Then, the dynamics become:

$$\dot{Y}_{\tau} = x^{\text{data}} - Y_{\tau}$$

• This is the standard gradient flow of the quadratic potential:

$$f(y) = \frac{1}{2} \left\| x^{\text{data}} - y \right\|^2$$



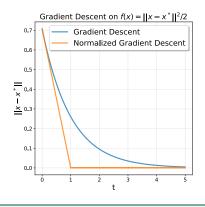
### Normalized Gradient Flow

The straight-line ODE  $\dot{X}_t = rac{x^* - X_t}{1 - t}$  is also equivalent to

$$\dot{X}_t = -\eta \frac{\nabla f(x)}{\|\nabla f(x)\|},$$

with

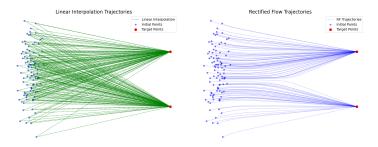
$$f(x) = \frac{1}{2} \|x - x^*\|^2, \quad \eta = \|x_0\|.$$



In general, normalized gradient flow on strongly convex functions [RB20]:

- Normalize the update norm across updates.
- Squeeze gradient flow into finite time.

### Rectified Flow: More Data Points



### Interpolation Paths

The interpolated paths have crossings, hence "non-causal"

#### Rectified Flow

- Learns a causal ODE that best approximates the interpolation path.
- Unentangles the path into a forward generative process.
- It de-randomizes, causalizes, and Markovizes the interpolation.

### From Interpolation to Generation

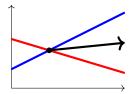
• Projecting the Interpolation Process to the ODE :

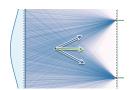
$$\min_{v} \mathbb{E}_{(X_0,X_1,t)} [\|\dot{X}_t - v_t(X_t)\|^2].$$

• The Explicit solution is

$$v^*(x,t) = \mathbb{E}\left[\dot{X}_t \mid X_t = x\right].$$

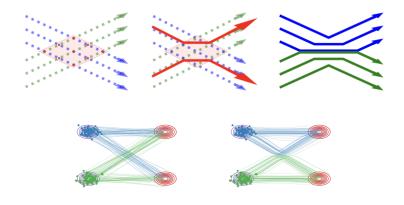
 The "mean field" velocity: Take the average direction whenever intersection happens.





## How Does Rewiring Actually Happen by Velocity Averaging?

How Does Averaging Velocity Lead to Trajectory Rewiring?



### Bias-variance Decomposition:

$$L(v) = \mathbb{E}\left[\|\dot{X}_t - v_t(X_t)\|^2\right]$$

$$= \mathbb{E}\left[\|\dot{X}_t - \mathbb{E}[\dot{X}_t \mid X_t]\|^2\right] + \mathbb{E}\left[\|v_t(X_t) - \mathbb{E}[\dot{X}_t \mid X_t]\|^2\right]$$
Conditional variance
$$= \mathbb{E}[\operatorname{Var}(\dot{X}_t | X_t)]$$
Estimation bias

Hence, the optimal solution should achieve zero bias:

$$v_t^*(X_t) = \mathbb{E}\left[\dot{X}_t \mid X_t\right].$$

### Bias-variance Decomposition:

$$L(v) = \mathbb{E}\left[\|\dot{X}_t - v_t(X_t)\|^2\right]$$

$$= \underbrace{\mathbb{E}\left[\|\dot{X}_t - \mathbb{E}[\dot{X}_t \mid X_t]\|^2\right]}_{\text{Conditional variance}} + \underbrace{\mathbb{E}\left[\|v_t(X_t) - \mathbb{E}[\dot{X}_t \mid X_t]\|^2\right]}_{\text{Estimation bias}}$$

$$= \mathbb{E}[\operatorname{Var}(\dot{X}_t | X_t)]$$

Hence, the optimal solution should achieve zero bias:

$$v_t^*(X_t) = \mathbb{E}\left[\dot{X}_t \mid X_t\right].$$

The minimum loss value is

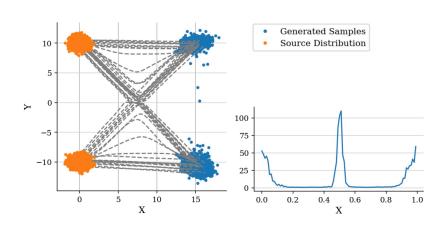
$$L(v^*) = \mathbb{E}\left[\operatorname{Var}(\dot{X}_t \mid X_t)\right].$$

#### It reflects:

- The degree of intersection of interpolation process  $\{X_t\}$ .
- The trajectory straightness of the rectified flow  $\{Z_t\}$ .

## Loss as Straightness

The lower the loss, the **straighter** the ODE path from noise to data.

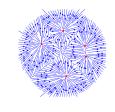


## Singular Velocity on Finite Data Points

On a finite number of data points  $\{x^{(i)}\}_{i=1}^n$ :

$$v^*(x,t) = \sum_{i=1}^n \omega_t^{(i)}(x) \left(\frac{x^{(i)}-x}{1-t}\right),$$

with posterior weights 
$$\omega_t^{(i)}(x) = \frac{\rho_0\left(\hat{x}_0^{(i)} \mid x^{(i)}\right)}{\sum_j \rho_0\left(\hat{x}_0^{(j)} \mid x^{(j)}\right)}, \, \hat{x}_0^{(i)} = \frac{x - tx^{(i)}}{1 - t}.$$



# Finite Mixture of $\frac{x^{(i)}-x}{1-t}$

- Singular velocity due to 1/(1-t).
- Dynamics exactly achieves the training data.
- Minimum training loss, but large evaluation loss.
- Neural network must provide smoothing as it can not fit the 1/(1-t) singularity.

## Analytic Velocity on Smooth Densities

With smooth densities, we get

$$\mathsf{v}_t^*(\mathsf{x}) = \mathbb{E}_{\mathsf{X}_1 \sim \pi_1} \left[ \omega_t(\mathsf{X}_1 \mid \mathsf{x}) \frac{\mathsf{X}_1 - \mathsf{x}}{1 - t} \right],$$

where  $\omega_t(x_1 \mid x)$  is the posterior probability:

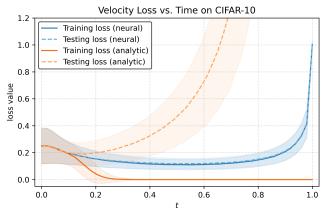
$$\omega_{t}(x_{1} \mid x) := \mathbb{P}(X_{1} = x_{1} \mid X_{t} = x) = \frac{\rho_{0}(\hat{x}_{0} \mid x_{1})}{\mathbb{E}_{X_{1}}\left[\rho_{0}(\hat{X}_{0} \mid X_{1})\right]}, \quad \hat{x}_{0} := \frac{x - tx_{1}}{1 - t}$$

where  $\rho_0(x_0 \mid x_1)$  is the density of  $X_0$  given  $X_1$ .

- Infinite mixture of the one-point velocity  $\frac{x^{\text{data}} x}{1 t}$ .
- Singularity may be smoothed out.

## Bless of Neural Fitting Error

- The singular analytic velocity on training data fails to generalize.
- But the neural net training refuses the singular solution.
- Avoiding singularity ensures data outside of training set can be sampled, leading to generalization.



Analytic model yields very small training loss yet exploding testing loss.

### Open Question:

- Why does neural network generalizes in a way that matches human perception?
- Related: mechanistic explanation of diffusion generalization [NZMW24, SZT17, NBMS17].