
Rewiring Trajectories
• Interpolation paths can intersect and cross
• But trajectories of ODEs can never cross each other.
• Rectified Flow rewires the crossings of interpolation.
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ODEs Trajectories Can Not Cross Each Other

Ẋt = vt(Xt).

• The update direction Ẋt is uniquely determined by Xt .

Let {Xt} and {X̃t} be solutions of the same ODE. Then

X0 = X̃0 =→ Xt = X̃t for all t in the existence interval.

t

Xt , X̃t

Possible for ODE

t

Impossible for ODE

Xt , X̃t

t

Rewired at crossing

Xt , X̃t
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Rectified Flow: Single Data Case
• Consider the case of a single point xdata:
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Rectified Flow: Single Data Case

• Interpolation:

Xt = tx
data + (1 ↑ t)X0.

• This interpolation also defines an ODE:

d

dt
Xt = x

data
↑ X0 =

x
data

↑ Xt

1 ↑ t
.

where X0 is eliminated using the
interpolation formula.

v
→(x , t) =

x
data

↑ x

1 ↑ t
is the RF velocity field.
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Single Point Rectified Flow

d

dt
Xt =

x
data

↑ Xt

1 ↑ t
, t ↓ [0, 1]

• Apparent singularity from the 1/(1 ↑ t) factor.
• Yet the solution is perfectly regular and stable:

• Straight trajectories
• Finite uniform speed
• Always arrives at Xt = x

data when t = 1

• Also perfectly numerically stable: Euler’s method yields exact solution
in one step.
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Single Point Rectified Flow

d

dt
Xt =

x
data

↑ Xt

1 ↑ t
, t ↓ [0, 1]

• Intuitively, 1/(1 ↑ t) is a “deadline pressure”.

• Carefully calculated to land x
data precisely at t = 1.
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Time-Scaled Gradient Flow
• Reparameterize time:

ω = ↑ log(1 ↑ t) ↔→ t = 1 ↑ e
↑ω .

• Define new variable: Yω := Xt(ω)

• Then, the dynamics become:
Ẏω = x

data
↑ Yω

• This is the standard gradient flow of the quadratic potential:
f (y) = 1

2

∥∥xdata ↑ y
∥∥2
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Normalized Gradient Flow

The straight-line ODE Ẋt =
x→↑Xt
1↑t is

also equivalent to

Ẋt = ↑ε
↗f (x)

↘↗f (x)↘
,

with

f (x) =
1
2
↘x ↑ x

→
↘
2 , ε = ↘x0↘ .

In general, normalized gradient flow on strongly convex functions [RB20]:

• Normalize the update norm across updates.

• Squeeze gradient flow into finite time.
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Rectified Flow: More Data Points

Interpolation Paths
• The interpolated paths have crossings, hence “non-causal”

Rectified Flow
• Learns a causal ODE that best approximates the interpolation path.

• Unentangles the path into a forward generative process.

• It de-randomizes, causalizes, and Markovizes the interpolation.
29



From Interpolation to Generation

• Projecting the Interpolation Process to the ODE :
min
v

E(X0,X1,t)

[
↘Ẋt ↑ vt(Xt)↘

2].

• The Explicit solution is

v
→(x , t) = E

[
Ẋt | Xt = x

]
.

• The “mean field” velocity: Take the average direction whenever
intersection happens.
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How Does Rewiring Actually Happen by Velocity Averaging?

• How Does Averaging Velocity Lead to Trajectory Rewiring?
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Bias-variance Decomposition:

L(v) = E
[
↘Ẋt ↑ vt(Xt)↘

2
]

= E
[
↘Ẋt ↑ E[Ẋt | Xt ]↘

2
]

︸ ︷︷ ︸
Conditional variance
=E[Var(Ẋt |Xt)]

+ E
[
↘vt(Xt)↑ E[Ẋt | Xt ]↘

2
]

︸ ︷︷ ︸
Estimation bias

• Hence, the optimal solution should achieve zero bias:

v
→
t (Xt) = E

[
Ẋt | Xt

]
.

• The minimum loss value is

L(v→) = E
[
Var(Ẋt | Xt)

]
.

It reflects:
• The degree of intersection of interpolation process {Xt}.
• The trajectory straightness of the rectified flow {Zt}.
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Loss as Straightness

The lower the loss, the straighter the ODE path from noise to data.
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Singular Velocity on Finite Data Points

On a finite number of data points {x
(i)
}
n
i=1:

v
→(x , t) =

n∑

i=1

ϑ(i)
t (x)

(
x
(i)

↑ x

1 ↑ t

)
,

with posterior weights ϑ(i)
t (x) =

ε0
(
x̂(i)0 | x(i)

)

∑
j ε0

(
x̂(j)0 | x(j)

) , x̂ (i)0 = x↑tx(i)

1↑t .

Finite Mixture of x(i)↑x
1↑t

• Singular velocity due to 1/(1 ↑ t).

• Dynamics exactly achieves the training data.

• Minimum training loss, but large evaluation loss.

• Neural network must provide smoothing as it can not fit the
1/(1 ↑ t) singularity.
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Analytic Velocity on Smooth Densities
With smooth densities, we get

v
→
t (x) = EX1↓ϑ1

[
ϑt(X1 | x)

X1 ↑ x

1 ↑ t

]
,

where ϑt(x1 | x) is the posterior probability:

ϑt(x1 | x) := P(X1 = x1 | Xt = x) =
ϖ0 (x̂0 | x1)

EX1

[
ϖ0

(
X̂0 | X1

] , x̂0 :=
x ↑ tx1

1 ↑ t

where ϖ0(x0 | x1) is the density of X0 given X1.

• Infinite mixture of the one-point velocity
x
data

↑ x

1 ↑ t
.

• Singularity may be smoothed out.
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Bless of Neural Fitting Error
• The singular analytic velocity on training data fails to generalize.
• But the neural net training refuses the singular solution.
• Avoiding singularity ensures data outside of training set can be

sampled, leading to generalization.

Analytic model yields very small training loss yet exploding testing loss.
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Open Question:
• Why does neural network generalizes in a way that matches human

perception?

• Related: mechanistic explanation of di!usion
generalization [NZMW24, SZT17, NBMS17].
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