Rewiring Trajectories

® |nterpolation paths can intersect and cross
e But trajectories of ODEs can never cross each other.
® Rectified Flow rewires the crossings of interpolation.

_

N

The Rewiring Demon
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ODEs Trajectories Can Not Cross Each Other

Xt = Vt(Xt)-

® The update direction X; is uniquely determined by X;.

Let {X;} and {X;} be solutions of the same ODE. Then

Xo=Xg = X, =X; forall tin the existence interval.

Xt7)?t

T

L

t t t
Possible for ODE Impossible for ODE Rewired at crossing
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Rectified Flow: Single Data Case

e Consider the case of a single point x

data.

— RF Trajectories
e Initial Points
@® Target Points
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Rectified Flow: Single Data Case

® |nterpolation:

X = tx¥%2 4 (1 — t)Xo.

e This interpolation also defines an ODE:

d Xdata_X
X, = data_X A
T 0 1—t

where Xy is eliminated using the
interpolation formula.

Xdata _

Vit =

is the RF velocity field.
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Single Point Rectified Flow

§ e x r//»
EXt:ﬁ’ t €10,1] \\\\\//%///
e Apparent singularity from the 1/(1 — t) factor. Z//_/_.‘///f

® Yet the solution is perfectly regular and stable: //
® Straight trajectories ////

® Finite uniform speed /// I

® Always arrives at X; = x%% when t =1

® Also perfectly numerically stable: Euler's method yields exact solution
in one step.
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Single Point Rectified Flow

d Xt Xdata _ Xt

—X; = t 1
pp: T €[0,1]

® Intuitively, 1/(1 — t) is a "deadline pressure”.

e Carefully calculated to land x33%2 precisely at t = 1.
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Time-Scaled Gradient Flow
® Reparameterize time:
T = —log(1l —t) = t=1—¢e".

® Define new variable: Y. := Xy
® Then, the dynamics become:

y data
Y =x -Y:

® This is the standard gradient flow of the quadratic potential:
2
fly) =5 [x*= =yl

1-exp(-1)
—log(1 —t)
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Normalized Gradient Flow

The straight-line ODE X; = % is o7
also equivalent to 05
) Vf_(X) :0.5

Xt = Nz i 04

VFI i

with 02
1 . 2 0.1

) =5l —x2, n=loll.

Gradient Descent on f(x) = ||x — x |22

—— Gradient Descent
\ Normalized Gradient Descent

In general, normalized gradient flow on strongly convex functions [RB20]:

® Normalize the update norm across updates.

® Squeeze gradient flow into
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Rectified Flow: More Data Points

Linear Interpolation Trajectories

Rectified Flow Trajectories

Interpolation Paths

® The interpolated paths have crossings, hence “non-causal”

Rectified Flow
® |earns a causal ODE that best approximates the interpolation path.
e Unentangles the path into a forward generative process.

® |t de-randomizes, causalizes, and Markovizes the interpolation.




From Interpolation to Generation

® Projecting the Interpolation Process to the ODE :
mvin E(Xo,Xl,t) [HXt — Vt(Xt)Hz] .

® The Explicit solution is
vi(x,t) =E [Xt | X¢ = X:| .

® The “mean field” velocity: Take the average direction whenever
intersection happens.
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How Does Rewiring Actually Happen by Velocity Averaging?

® How Does Averaging Velocity Lead to Trajectory Rewiring?

'TTALY
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Bias-variance Decomposition:
L(v) =E [|IX — ve(X)I?]

=E [IX: — E[X: | XI?] +E [lve(X:) — EIX: | Xi]|1

Condition‘arl variance Estimation bias
=E[Var(X¢| X¢)]

® Hence, the optimal solution should achieve zero bias:

Vi(X:) = E [xt | xt] .
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Bias-variance Decomposition:
L(v) =E [|IX — ve(X)I?]

=E [IX: — E[X: | XI?] +E [lve(X:) — EIX: | Xi]|1

Condition‘arl variance Estimation bias
=E[Var(X¢| X¢)]

® Hence, the optimal solution should achieve zero bias:
Vi(X:) = E [xt | xt] .
® The minimum loss value is
L(v)=E [Var(xt | xt)} .

It reflects:

® The of interpolation process {X;}.
® The of the rectified flow {Z,}.
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Loss as Straightness

[ The lower the loss, the straighter the ODE path from noise to data. ]

¢ Generated Samples
¢ Source Distribution
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Singular Velocity on Finite Data Points

On a finite number of data points {x()}7_,:

RPN SO
v t) =Y w6 () <H>

i=1

Finite Mixture of X(li):tx

* Singular velocity due to 1/(1 — t).

® Dynamics exactly achieves the training data.
® Minimum training loss, but large evaluation loss.

® Neural network must provide smoothing as it can not fit the
1/(1 — t) singularity.
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Analytic Velocity on Smooth Densities

With smooth densities, we get

N X1 —x
00 = B [ 1077
where w¢(x1 | x) is the posterior probability:
po (%o | x1)

wt(xl|)<)::IP>(X1:X1\Xt:x):IE [p ()A( |X)]7
X1 | PO 0 1

where po(xo | x1) is the density of Xy given X;.

A

X —txy

o 1-—t

data __

¢ Infinite mixture of the one-point velocity —~—7

® Singularity may be smoothed out.
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Bless of Neural Fitting Error

® The singular analytic velocity on training data fails to generalize.
e But the neural net training refuses the singular solution.
® Avoiding singularity ensures data outside of training set can be

sampled, leading to generalization.
Velocity Loss vs. Time on CIFAR-10
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Analytic model yields very small training loss yet exploding testing loss.
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Open Question:

® Why does neural network generalizes in a way that matches human
perception?

® Related: mechanistic explanation of diffusion
generalization [NZMW24, SZT17, NBMS17].
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